Skip to main content
Log in

Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar M, Mandal UK, Mahmood S. Dermatological formulations. 1st ed. 2024;613–42.

  2. Honari G. Skin structure and function. Sensitive Ski Syndr. CRC Press; 2017. p. 16–22.

  3. Xu R, Fang Y, Zhang Z, Cao Y, Yan Y, Gan L, et al. Recent advances in biodegradable and biocompatible synthetic polymers used in skin wound healing. Materials (Basel). 2023;16:5459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yousef H, Alhajj M, Sharma S. Anatomy, skin (integument), epidermis. 2017.

  5. Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, de Santiago GT. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater. 2023;24:197–235.

    CAS  PubMed  Google Scholar 

  6. Kumar M, Mandal UK. Asiaticoside: A Wonderful Herbal Component of Versatile Therapeutic benefits with Special Reference to Wound Healing Activity. J Clin Exp Dermatol Res. 2021;12:1–7.

    Google Scholar 

  7. Kumar M, Kumar D, Mahmood S, Singh V, Chopra S, Hilles AR, et al. Nanotechnology-driven wound healing potential of asiaticoside: a comprehensive review. RSC Pharm. 2024;1:9-36.

  8. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar M, Mahmood S, Mandal UK. An updated account on formulations and strategies for the treatment of burn infection-a review. Curr Pharm Des. 2022;28:1480–92.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Correction: Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech. 2023;24:206.

    Article  PubMed  Google Scholar 

  11. Percival S, Cutting K. Microbiology of wounds. CrC press; 2010.

  12. Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci. 2015;104:3653–80.

    Article  CAS  PubMed  Google Scholar 

  13. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci. 2019;136:47738.

    Article  Google Scholar 

  14. Andreu V, Mendoza G, Arruebo M, Irusta S. Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials (Basel). 2015;8:5154–93.

    Article  PubMed  Google Scholar 

  15. Zahid AA, Chakraborty A, Shamiya Y, Ravi SP, Paul A. Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications. Mater Horizons. 2022;9:1850–65.

    Article  Google Scholar 

  16. Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nandhini J, Karthikeyan E, Rajeshkumar S. Nanomaterials for wound healing: Current status and futuristic frontier. Biomed Technol. 2024;6:26–45.

    Article  Google Scholar 

  18. Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol. 2016;4:82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol. 2016;25:167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nasseri S, Sharifi M. Therapeutic potential of antimicrobial peptides for wound healing. Int J Pept Res Ther. 2022;28:38.

    Article  CAS  Google Scholar 

  21. Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics. 2020;9:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Pept Sci. 2008;90:604–10.

    Article  CAS  Google Scholar 

  23. Aramwit P. Introduction to biomaterials for wound healing. Wound Heal Biomater. Elsevier; 2016;2:3–38.

  24. Naimer SA, Chemla F. Elastic adhesive dressing treatment of bleeding wounds in trauma victims. Am J Emerg Med. 2000;18:816–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pereira RF, Bartolo PJ. Traditional therapies for skin wound healing. Adv wound care. 2016;5:208–29.

    Article  Google Scholar 

  26. Sheridan RL, Morgan JR, Mohammad R. Biomaterials in burn and wound dressings. Polym Biomater Revis Expand. CRC Press; 2001. p. 465–72.

  27. Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur Polym J. 2020;130: 109609.

    Article  CAS  Google Scholar 

  28. Moura LIF, Dias AMA, Carvalho E, de Sousa HC. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater. 2013;9:7093–114.

    Article  CAS  PubMed  Google Scholar 

  29. Augustine R, Kalarikkal N, Thomas S. Advancement of wound care from grafts to bioengineered smart skin substitutes. Prog Biomater. 2014;3:103–13.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Josephson CD, Kuehnert MJ. Human tissue allografts: responsibilities in understanding the path from donor to recipient. Ross Princ Transfus Med. 2022;660–73.

  31. Hermans MHE. Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference? Burns. 2014;40:408–15.

    Article  PubMed  Google Scholar 

  32. Bahaj MS, Maki MAA, Rao KRSS, Kumar PV. Progressive exploration on the influence of natural polymers and emerging biomaterials in advanced wound care strategies. Indian J Biochem Biophys. 2024;61:127–44.

    CAS  Google Scholar 

  33. Moreira TD, Martins VB, da Silva Júnior AH, Sayer C, de Araújo PHH, Immich APS. New insights into biomaterials for wound dressings and care: Challenges and trends. Prog Org Coatings. 2024;187: 108118.

    Article  CAS  Google Scholar 

  34. Liu Y, Ouyang Y, Yu L, Wang P, Peng Z, Liu H, et al. Novel approach for enhancing skin allograft survival by bioadhesive nanoparticles loaded with rapamycin. Int J Pharm. 2024;651: 123742.

    Article  CAS  PubMed  Google Scholar 

  35. Sommerfeld SD, Zhou X, Mejías JC, Oh BC, Maestas DR, Furtmüller GJ, et al. Biomaterials-based immunomodulation enhances survival of murine vascularized composite allografts. Biomater Sci. 2023;11:4022–31.

    Article  CAS  PubMed  Google Scholar 

  36. Irilouzadian R, Khalaji A, Baghsheikhi H, Sarmadian R, Hoveidamanesh S, Ghadimi T, et al. The clinical outcomes of xenografts in the treatment of burn patients: a systematic review and meta-analysis. Eur J Med Res. 2023;28:524.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jang Y, Kim T, Kim D. Clinical and radiological outcomes between superior capsule reconstruction using allografts or xenografts: a 2-year retrospective comparison study. J Shoulder Elb Surg. 2023. https://doi.org/10.1016/j.jse.2023.10.032.

  38. Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-micro Lett. 2022;14:1–46.

    Article  Google Scholar 

  39. Kumar M, Thakur A, Mandal UK, Thakur A, Bhatia A. Foam-Based Drug Delivery: A Newer Approach for Pharmaceutical Dosage Form. AAPS PharmSciTech. 2022;23:244.

    Article  PubMed  Google Scholar 

  40. Gomes I, Dale CS, Casten K, Geigner MA, Gozzo FC, Ferro ES, et al. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS J. 2010;12:658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim HS, Sun X, Lee J-H, Kim H-W, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019;146:209–39.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng Y, Wu J, Zhu Y, Wu C. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem Sci. 2023;14:29–53.

    Article  CAS  Google Scholar 

  43. Zhang X, Qin M, Xu M, Miao F, Merzougui C, Zhang X, et al. The fabrication of antibacterial hydrogels for wound healing. Eur Polym J. 2021;146: 110268.

    Article  CAS  Google Scholar 

  44. Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res Part B Appl Biomater. 2022;110:2542–73.

    Article  CAS  Google Scholar 

  45. Wang F, Hu S, Jia Q, Zhang L. Advances in electrospinning of natural biomaterials for wound dressing. J Nanomater. 2020;2020:1–20.

  46. Chatterjee R, Maity M, Hasnain MS, Nayak AK. Chitosan: source, chemistry, and properties. Chitosan Drug Deliv. Elsevier; 2022. p. 1–22.

  47. Baharlouei P, Rahman A. Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar Drugs. 2022;20:460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soubhagya AS, Moorthi A, Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int J Biol Macromol. 2020;157:135–45.

    Article  CAS  PubMed  Google Scholar 

  49. Bombin ADJ, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C. 2020;114: 110994.

    Article  Google Scholar 

  50. Akakuru OU, Louis H, Amos PI, Akakuru OC, Nosike EI, Ogulewe EF. The chemistry of chitin and chitosan justifying their nanomedical utilities. Biochem Pharmacol (Los Angel). 2018;7:501–2167.

    Google Scholar 

  51. Garg Y, Kumar M, Sharma G, Katare OP, Chopra S, Bhatia A. Systematic designing and optimization of polymeric nanoparticles using central composite design: a novel approach for nose-to-brain delivery of donepezil hydrochloride. J Clust Sci. 2023;1–13. https://doi.org/10.1007/s10876-023-02528-2.

  52. Yadav TC, Srivastava AK, Raghuwanshi N, Kumar N, Prasad R, Pruthi V. Wound healing potential of natural polymer: chitosan “A Wonder Molecule.” Integr Green Chem Sustain Eng. Hoboken: John Wiley Sons, Ltd.; 2019. p. 527–79.

  53. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8:7533–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iacob AT, Lupascu FG, Apotrosoaei M, Vasincu IM, Tauser RG, Lupascu D, et al. Recent biomedical approaches for chitosan based materials as drug delivery nanocarriers. Pharmaceutics. 2021;13:587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramya R, Venkatesan J, Kim SK, Sudha PN. Biomedical applications of chitosan: an overview. J Biomater Tissue Eng. 2012;2:100–11.

    Article  CAS  Google Scholar 

  56. Abourehab MAS, Rajendran RR, Singh A, Pramanik S, Shrivastav P, Ansari MJ, et al. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art. Int J Mol Sci. 2022;23:9035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application-A review. Int J Biol Macromol. 2023;253:127331.

  58. Lin Z, Wu T, Wang W, Li B, Wang M, Chen L, et al. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int J Biol Macromol. 2019;140:330–42.

    Article  CAS  PubMed  Google Scholar 

  59. Hegde V, Uthappa UT, Altalhi T, Jung H-Y, Han SS, Kurkuri MD. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Mater Today Commun. 2022;33:104813.

  60. Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym. 2020;236: 116025.

    Article  CAS  PubMed  Google Scholar 

  61. Saraiva MM, Campelo M da S, Camara Neto JF, Lima ABN, Silva G de A, Dias AT de FF, et al. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J Biomed Mater Res Part B Appl Biomater. 2023;111:220–33.

  62. Jing X, Sun Y, Liu Y, Ma X, Hu H. Alginate/chitosan-based hydrogel loaded with gene vectors to deliver polydeoxyribonucleotide for effective wound healing. Biomater Sci. 2021;9:5533–41.

    Article  CAS  PubMed  Google Scholar 

  63. Barbu A, Neamtu B, Zăhan M, Iancu GM, Bacila C, Mireșan V. Current trends in advanced alginate-based wound dressings for chronic wounds. J Pers Med. 2021;11:890.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mao G, Tian S, Shi Y, Yang J, Li H, Tang H, et al. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydr Polym. 2023;311: 120757.

    Article  CAS  PubMed  Google Scholar 

  65. Feng X, Zhang X, Li S, Zheng Y, Shi X, Li F, et al. Preparation of aminated fish scale collagen and oxidized sodium alginate hybrid hydrogel for enhanced full-thickness wound healing. Int J Biol Macromol. 2020;164:626–37.

    Article  CAS  PubMed  Google Scholar 

  66. Naomi R, Bahari H, Ridzuan PM, Othman F. Natural-based biomaterial for skin wound healing (Gelatin vs. collagen): Expert review. Polymers (Basel). 2021;13:2319.

    Article  CAS  PubMed  Google Scholar 

  67. Ebhodaghe SO. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. J Biomater Sci Polym Ed. 2022;33:1595–622.

    Article  CAS  PubMed  Google Scholar 

  68. Li T, Sun M, Wu S. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials. 2022;12:784.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Garcia-Orue I, Santos-Vizcaino E, Etxabide A, Uranga J, Bayat A, Guerrero P, et al. Development of bioinspired gelatin and gelatin/chitosan bilayer hydrofilms for wound healing. Pharmaceutics. 2019;11:314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kushibiki T, Mayumi Y, Nakayama E, Azuma R, Ojima K, Horiguchi A, et al. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci Rep. 2021;11:23094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stubbe B, Mignon A, Van Damme L, Claes K, Hoeksema H, Monstrey S, et al. Photo-crosslinked gelatin-based hydrogel films to support wound healing. Macromol Biosci. 2021;21:2100246.

    Article  CAS  Google Scholar 

  72. Lu Y, Zhu X, Hu C, Li P, Zhao M, Lu J, et al. A fucoidan-gelatin wound dressing accelerates wound healing by enhancing antibacterial and anti-inflammatory activities. Int J Biol Macromol. 2022;223:36–48.

    Article  CAS  PubMed  Google Scholar 

  73. Taheri P, Jahanmardi R, Koosha M, Abdi S. Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose. Int J Biol Macromol. 2020;154:421–32.

    Article  CAS  PubMed  Google Scholar 

  74. Kamoun EA, Chen X, Eldin MSM, Kenawy E-RS. Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab J Chem. 2015;8:1–14.

    Article  CAS  Google Scholar 

  75. Gajra B, Pandya SS, Vidyasagar G, Rabari H, Dedania RR, Rao S. Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: A review. Int J Pharm Res. 2012;4:2026.

    Google Scholar 

  76. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed. 2017;28:2220–41.

    Article  CAS  PubMed  Google Scholar 

  77. Alven S, Aderibigbe BA. Fabrication of Hybrid Nanofibers from Biopolymers and Poly (Vinyl Alcohol)/Poly (ε-Caprolactone) for Wound Dressing Applications. Polymers (Basel). 2021;13:2104.

    Article  CAS  PubMed  Google Scholar 

  78. Mir M, Ali MN, Barakullah A, Gulzar A, Arshad M, Fatima S, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7:1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Masud RA, Islam MS, Haque P, Khan MNI, Shahruzzaman M, Khan M, et al. Preparation of novel chitosan/poly (ethylene glycol)/ZnO bionanocomposite for wound healing application: effect of gentamicin loading. Materialia. 2020;12: 100785.

    Article  CAS  Google Scholar 

  80. Farzaei MH, Derayat P, Pourmanouchehri Z, Kahrarian M, Samimi Z, Hajialyani M, et al. Characterization and evaluation of antibacterial and wound healing activity of naringenin-loaded polyethylene glycol/polycaprolactone electrospun nanofibers. J Drug Deliv Sci Technol. 2023;81: 104182.

    Article  CAS  Google Scholar 

  81. Wang Z, Zhao Z, Khan NR, Hua Z, Huo J, Li Y. Microwave assisted chitosan-polyethylene glycol hydrogel membrane synthesis of curcumin for open incision wound healing. Die Pharm Int J Pharm Sci. 2020;75:118–23.

    CAS  Google Scholar 

  82. Minhas MU, Ahmad S, Khan KU, Sohail M, Abdullah O, Khalid I, et al. Synthesis and evaluation of polyethylene glycol-4000-co-poly (AMPS) based hydrogel membranes for controlled release of mupirocin for efficient wound healing. Curr Drug Deliv. 2022;19:1102–15.

    Article  CAS  PubMed  Google Scholar 

  83. Del Olmo JA, Alonso JM, Sáez-Martínez V, Benito-Cid S, Moreno-Benítez I, Bengoa-Larrauri M, et al. Self-healing, antibacterial and anti-inflammatory chitosan-PEG hydrogels for ulcerated skin wound healing and drug delivery. Biomater Adv. 2022;139: 212992.

    Article  Google Scholar 

  84. Zhang H, Lin X, Cao X, Wang Y, Wang J, Zhao Y. Developing natural polymers for skin wound healing. Bioact Mater. 2024;33:355–76.

    CAS  PubMed  Google Scholar 

  85. Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res. 2002;62:5139–43.

    CAS  PubMed  Google Scholar 

  86. Yin L, Li X, Wang R, Zeng Y, Zeng Z, Xie T. Recent Research Progress of RGD Peptide-Modified Nanodrug Delivery Systems in Tumor Therapy. Int J Pept Res Ther. 2023;29:53.

    Article  CAS  Google Scholar 

  87. Mertz PM, Davis SC, Franzen L, Uchima F-D, Pickett MP, Pierschbacher MD, et al. Effects of an arginine-glycine-aspartic acid peptide-containing artificial matrix on epithelial migration in vitro and experimental second-degree burn wound healing in vivo. J Burn Care Rehabil. 1996;17:199–206.

    Article  CAS  PubMed  Google Scholar 

  88. Cui FZ, Tian WM, Hou SP, Xu QY, Lee I-S. Hyaluronic acid hydrogel immobilized with RGD peptides for brain tissue engineering. J Mater Sci Mater Med. 2006;17:1393–401.

    Article  CAS  PubMed  Google Scholar 

  89. Chen J, Li H, Chen J. Human epidermal growth factor coupled to different structural classes of cell penetrating peptides: A comparative study. Int J Biol Macromol. 2017;105:336–45.

    Article  CAS  PubMed  Google Scholar 

  90. Ying H, Zhou J, Wang M, Su D, Ma Q, Lv G, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C. 2019;101:487–98.

    Article  CAS  Google Scholar 

  91. Hazrati R, Davaran S, Omidi Y. Bioactive functional scaffolds for stem cells delivery in wound healing and skin regeneration. React Funct Polym. 2022;174: 105233.

    Article  CAS  Google Scholar 

  92. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. Critical role of transforming growth factor beta in different phases of wound healing. Adv wound care. 2013;2:215–24.

    Article  Google Scholar 

  93. Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022;290: 120096.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang S, Uludağ H. Nanoparticulate systems for growth factor delivery. Pharm Res. 2009;26:1561–80.

    Article  CAS  PubMed  Google Scholar 

  95. Del Gaudio P, De Cicco F, Aquino RP, Picerno P, Russo P, Dal Piaz F, et al. Evaluation of in situ injectable hydrogels as controlled release device for ANXA1 derived peptide in wound healing. Carbohydr Polym. 2015;115:629–35.

    Article  PubMed  Google Scholar 

  96. Chen F, Zhao Y, Wu H, Deng Z, Wang Q, Zhou W, et al. Enhancement of periodontal tissue regeneration by locally controlled delivery of insulin-like growth factor-I from dextran–co-gelatin microspheres. J Control release. 2006;114:209–22.

    Article  CAS  PubMed  Google Scholar 

  97. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8:153–70.

    Article  CAS  PubMed  Google Scholar 

  98. John JV, McCarthy A, Wang H, Chen S, Su Y, Davis E, et al. Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble–mediated coaxial electrospray. Small. 2020;16:1907393.

    Article  CAS  Google Scholar 

  99. Haney EF, Hancock REW. Peptide design for antimicrobial and immunomodulatory applications. Pept Sci. 2013;100:572–83.

    Article  CAS  Google Scholar 

  100. Wei Q, Duan J, Ma G, Zhang W, Wang Q, Hu Z. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing. J Mater Chem B. 2019;7:2220–5.

    Article  CAS  PubMed  Google Scholar 

  101. Tesauro D, Accardo A, Diaferia C, Milano V, Guillon J, Ronga L, et al. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules. 2019;24:351.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Verma S, Goand UK, Husain A, Katekar RA, Garg R, Gayen JR. Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev Res. 2021;82:927–44.

    Article  CAS  PubMed  Google Scholar 

  103. Lee Y-CJ, Javdan B, Cowan A, Smith K. More than skin deep: cyclic peptides as wound healing and cytoprotective compounds. Front Cell Dev Biol. 2023;11:1195600.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang X, Duan H, Li M, Xu W, Wei L. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides. Front Cell Dev Biol. 2023;11:1219427.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ebrahimi A, Farahpour MR, Amjadi S, Mohammadi M, Hamishehkar H. Nanoliposomal peptides derived from Spirulina platensis protein accelerate full-thickness wound healing. Int J Pharm. 2023;630: 122457.

    Article  CAS  PubMed  Google Scholar 

  106. John JV, Sharma NS, Tang G, Luo Z, Su Y, Weihs S, et al. Nanofiber aerogels with precision macrochannels and LL-37-mimic peptides synergistically promote diabetic wound healing. Adv Funct Mater. 2023;33:2206936.

    Article  CAS  PubMed  Google Scholar 

  107. Rai A, Ferrão R, Palma P, Patricio T, Parreira P, Anes E, et al. Antimicrobial peptide-based materials: Opportunities and challenges. J Mater Chem B. 2022;10:2384–429.

    Article  CAS  PubMed  Google Scholar 

  108. Peczuh MW, Hamilton AD. Peptide and protein recognition by designed molecules. Chem Rev. 2000;100:2479–94.

    Article  CAS  PubMed  Google Scholar 

  109. Yin S, Wang Y, Yang X. Amphibian-derived wound healing peptides: chemical molecular treasure trove for skin wound treatment. Front Pharmacol. 2023;14:1120228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9:281.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Xu L, Xu S, Xiang T, Liu H, Chen L, Jiang B, et al. Multifunctional building elements for the construction of peptide drug conjugates. Eng Regen. 2022;3:92–109.

    Google Scholar 

  112. Sewald N, Jakubke H-D. Peptides: chemistry and biology. John Wiley & Sons; 2015.

  113. Savale SK. Protein and peptide drug delivery system. World J Pharm Pharm Sci. 2016;5:1–19.

    CAS  Google Scholar 

  114. Mei F, Liu J, Wu J, Duan Z, Chen M, Meng K, et al. Collagen peptides isolated from salmo salar and tilapia nilotica skin accelerate wound healing by altering cutaneous microbiome colonization via upregulated NOD2 and BD14. J Agric Food Chem. 2020;68:1621–33.

    Article  CAS  PubMed  Google Scholar 

  115. Yang Q, Xie Z, Hu J, Liu Y. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater Sci Eng C. 2021;128: 112319.

    Article  CAS  Google Scholar 

  116. Deng A, Yang Y, Du S, Yang X, Pang S, Wang X, et al. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater Sci Eng C. 2021;119: 111555.

    Article  CAS  Google Scholar 

  117. Chereddy KK, Her C-H, Comune M, Moia C, Lopes A, Porporato PE, et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release. 2014;194:138–47.

    Article  CAS  PubMed  Google Scholar 

  118. Sultana A, Luo H, Ramakrishna S. Antimicrobial peptides and their applications in biomedical sector. Antibiotics. 2021;10:1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Otvos L Jr, Ostorhazi E. Therapeutic utility of antibacterial peptides in wound healing. Expert Rev Anti Infect Ther. 2015;13:871–81.

    Article  CAS  PubMed  Google Scholar 

  120. Zhao C-C, Zhu L, Wu Z, Yang R, Xu N, Liang L. Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation. Regen Biomater. 2020;7:99–107.

    CAS  PubMed  Google Scholar 

  121. Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18:807–17.

    Article  CAS  PubMed  Google Scholar 

  122. Luong HX, Thanh TT, Tran TH. Antimicrobial peptides–Advances in development of therapeutic applications. Life Sci. 2020;260: 118407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang L, Tai Y, Liu X, Liu Y, Dong Y, Liu Y, et al. Natural polymeric and peptide-loaded composite wound dressings for scar prevention. Appl Mater Today. 2021;25: 101186.

    Article  Google Scholar 

  124. d’Orlyé F, Trapiella-Alfonso L, Lescot C, Pinvidic M, Doan B-T, Varenne A. Synthesis, characterization and evaluation of peptide nanostructures for biomedical applications. Molecules. 2021;26:4587.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Deshayes S, Morris M, Heitz F, Divita G. Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Deliv Rev. 2008;60:537–47.

    Article  CAS  PubMed  Google Scholar 

  126. Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-based drug delivery systems. Medicina (B Aires). 2021;57:1209.

    Article  Google Scholar 

  127. Bolatchiev A, Baturin V, Bazikov I, Maltsev A, Kunitsina E. Effect of antimicrobial peptides HNP-1 and hBD-1 on Staphylococcus aureus strains in vitro and in vivo. Fundam Clin Pharmacol. 2020;34:102–8.

    Article  CAS  PubMed  Google Scholar 

  128. Shi R, Li H, Jin X, Huang X, Ou Z, Zhang X, et al. Promoting Re-epithelialization in an oxidative diabetic wound microenvironment using self-assembly of a ROS-responsive polymer and P311 peptide micelles. Acta Biomater. 2022;152:425–39.

    Article  CAS  PubMed  Google Scholar 

  129. Lin Y, Zhang Y, Cai X, He H, Yang C, Ban J, et al. Design and self-assembly of peptide-copolymer conjugates into nanoparticle hydrogel for wound healing in diabetes. Int J Nanomedicine. 2024;574:2487–506.

  130. Nayab S, Aslam MA, Rahman S ur, Sindhu Z ud D, Sajid S, Zafar N, et al. A review of antimicrobial peptides: its function, mode of action and therapeutic potential. Int J Pept Res Ther. 2022;28:46.

  131. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38:406–24.

    Article  CAS  PubMed  Google Scholar 

  132. El-Andaloussi S, Holm T, Langel U. Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des. 2005;11:3597–611.

    Article  CAS  PubMed  Google Scholar 

  133. Desale K, Kuche K, Jain S. Cell-penetrating peptides (CPPs): An overview of applications for improving the potential of nanotherapeutics. Biomater Sci. 2021;9:1153–88.

    Article  CAS  PubMed  Google Scholar 

  134. Hällbrink M, Kilk K, Elmquist A, Lundberg P, Lindgren M, Jiang Y, et al. Prediction of cell-penetrating peptides. Int J Pept Res Ther. 2005;11:249–59.

    Article  Google Scholar 

  135. Pescina S, Ostacolo C, Gomez-Monterrey IM, Sala M, Bertamino A, Sonvico F, et al. Cell penetrating peptides in ocular drug delivery: State of the art. J Control Release. 2018;284:84–102.

    Article  CAS  PubMed  Google Scholar 

  136. Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev. 2009;61:953–64.

    Article  CAS  PubMed  Google Scholar 

  137. Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. Biochim Biophys Acta (BBA)-Proteins Proteomics. 2021;1869:140604.

    Article  CAS  PubMed  Google Scholar 

  138. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181:151–67.

    Article  CAS  PubMed  Google Scholar 

  139. Van NT, Lee K-H, Huang Y, Shin MC, Park YS, Kim H, et al. Topical Delivery of Cell-penetrating peptide-modified human growth hormone for enhanced wound healing. Pharmaceuticals. 2023;16:394.

    Article  Google Scholar 

  140. Gori A, Lodigiani G, Colombarolli SG, Bergamaschi G, Vitali A. Cell Penetrating Peptides: Classification, Mechanisms, Methods of Study, and Applications. ChemMedChem. 2023;18: e202300236.

    Article  CAS  PubMed  Google Scholar 

  141. Sajid MI, Moazzam M, Stueber R, Park SE, Cho Y, Tiwari RK. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool. Peptides. 2021;141: 170542.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang R, Qin X, Kong F, Chen P, Pan G. Improving cellular uptake of therapeutic entities through interaction with components of cell membrane. Drug Deliv. 2019;26:328–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release. 2019;309:106–24.

    Article  CAS  PubMed  Google Scholar 

  144. Ruczynski J, Wierzbicki PM, Kogut-Wierzbicka M, Mucha P, Siedlecka-Kroplewska K, Rekowski P. Cell-penetrating peptides as a promising tool for delivery of various molecules into the cells. Folia Histochem Cytobiol. 2014;52:257–69.

    Article  PubMed  Google Scholar 

  145. Langel Ü. CPP, cell-penetrating peptides. Springer; 2019.

  146. Epand RM, Shai Y, Segrest JP, Anantharamiah GM. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolym Orig Res Biomol. 1995;37:319–38.

    CAS  Google Scholar 

  147. Kalafatovic D, Giralt E. Cell-penetrating peptides: Design strategies beyond primary structure and amphipathicity. Molecules. 2017;22:1929.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17:850–60.

    Article  CAS  PubMed  Google Scholar 

  149. Cruz J, Ortiz C, Guzman F, Fernández-Lafuente R, Torres R. Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem. 2014;21:2299–321.

    Article  CAS  PubMed  Google Scholar 

  150. Bahar AA, Ren D. Antimicrobial peptides Pharmaceuticals. 2013;6:1543–75.

    PubMed  Google Scholar 

  151. Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32:143–71.

    Article  CAS  PubMed  Google Scholar 

  152. Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, et al. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist. 2018;24:747–67.

    Article  CAS  PubMed  Google Scholar 

  153. Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, et al. Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther. 2020;26:1451–63.

    Article  CAS  Google Scholar 

  154. Yu SM, Li Y, Kim D. Collagen mimetic peptides: progress towards functional applications. Soft Matter. 2011;7:7927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Malcor J-D, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater. 2022;148:1–21.

    Article  CAS  PubMed  Google Scholar 

  156. Xu Y, Kirchner M. Collagen mimetic peptides. Bioengineering. 2021;8:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chan TR, Stahl PJ, Li Y, Yu SM. Collagen–gelatin mixtures as wound model, and substrates for VEGF-mimetic peptide binding and endothelial cell activation. Acta Biomater. 2015;15:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, et al. Supramolecular peptide nanofiber hydrogels for bone tissue engineering: from multihierarchical fabrications to comprehensive applications. Adv Sci. 2022;9:2103820.

    Article  CAS  Google Scholar 

  159. de Torre IG, García-Arévalo C, Alonso M, Cabello JCR. Stimuli-responsive protein fibers for advanced applications. Smart Polym their Appl. Elsevier; 2019. p. 323–77.

  160. de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol. 2020;91:176–87.

    Article  PubMed  Google Scholar 

  161. Rowley AT, Nagalla RR, Wang S, Liu WF. Extracellular matrix-based strategies for immunomodulatory biomaterials engineering. Adv Healthc Mater. 2019;8:1801578.

    Article  Google Scholar 

  162. Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. Langmuir. 2022;38:8733–47.

    Article  CAS  PubMed  Google Scholar 

  163. Fang H, Chen W, Gao Y, Shen Y, Luo M. Molecular mechanisms associated with Angiotensin-converting enzyme-inhibitory peptide activity on vascular extracellular matrix remodeling. Cardiology. 2014;127:247–55.

    Article  CAS  PubMed  Google Scholar 

  164. Cardoso F, Lewis R, Vetter I, Inserra M, King G. Does nature do ion channel drug discovery better than us? RSC Drug Discov Ser. 2014;2015:297–319.

  165. Gelain F, Luo Z, Zhang S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev. 2020;120:13434–60.

    Article  CAS  PubMed  Google Scholar 

  166. Park SI, An GM, Kim MG, Heo SH, Shin MS. Enhancement of skin permeation of anti-wrinkle peptide GHKs using cell penetrating peptides. Korean Chem Eng Res. 2020;58:29–35.

    CAS  Google Scholar 

  167. Pickart L, Vasquez-Soltero JM, Margolina A. The effect of the human peptide GHK on gene expression relevant to nervous system function and cognitive decline. Brain Sci. 2017;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Schussler O, Falcoz PE, Chachques JC, Alifano M, Lecarpentier Y. Possible treatment of myocardial infarct based on tissue engineering using a cellularized solid collagen scaffold functionalized with Arg-Glyc-Asp (RGD) peptide. Int J Mol Sci. 2021;22:12563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. König N. Structure and exchange kinetics of nanocrystalline micelles, telechelic hydrogels and self-assembling antimicrobial peptides. 2020.

  170. Xu D, Chen W, Tobin-Miyaji YJ, Sturge CR, Yang S, Elmore B, et al. Fabrication and microscopic and spectroscopic characterization of cytocompatible self-assembling antimicrobial nanofibers. ACS Infect Dis. 2018;4:1327–35.

    Article  CAS  PubMed  Google Scholar 

  171. Sant’Ana EMC. Estudo do efeito da Alternagina-C, uma desintegrina do veneno de Bothrops alternatus e de um peptídeo sintético derivado de sua estrutura, sobre a expressão de fatores de crescimento, angiogênese e cicatrização de lesão em pele de rato. 2008.

  172. Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev. 2008;60:548–58.

    Article  CAS  PubMed  Google Scholar 

  173. Kumar VB, Tiwari OS, Finkelstein-Zuta G, Rencus-Lazar S, Gazit E. Design of functional RGD peptide-based biomaterials for tissue engineering. Pharmaceutics. 2023;15:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Guan T, Li J, Chen C, Liu Y. Self-assembling peptide-based hydrogels for wound tissue repair. Adv Sci. 2022;9:2104165.

    Article  CAS  Google Scholar 

  175. Vaz ER, Fujimura PT, Araujo GR, da Silva CAT, Silva RL, Cunha TM, et al. A short peptide that mimics the binding domain of TGF-β1 presents potent anti-inflammatory activity. PLoS ONE. 2015;10: e0136116.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kiveliö A-SJ. Tissue engineering for prenatal applications. EPFL; 2015.

  177. Puthia M, Butrym M, Petrlova J, Strömdahl A-C, Andersson MÅ, Kjellström S, et al. A dual-action peptide-containing hydrogel targets wound infection and inflammation. Sci Transl Med. 2020;12:eaax6601.

    Article  CAS  PubMed  Google Scholar 

  178. Petruk G, Petrlova J, Samsudin F, Del GR, Bond PJ, Schmidtchen A. Concentration-and pH-dependent oligomerization of the thrombin-derived C-terminal peptide TCP-25. Biomolecules. 2020;10:1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yang S, Wang C, Zhu J, Lu C, Li H, Chen F, et al. Self-assembling peptide hydrogels functionalized with LN-and BDNF-mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics. 2020;10:8227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Tałałaj U, Uścinowicz P, Bruzgo I, Surażyński A, Zaręba I, Markowska A. The effects of a novel series of KTTKS analogues on cytotoxicity and proteolytic activity. Molecules. 2019;24:3698.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lee JY, Cho KH, Kim JW, Nam SD, Kim HY, Shin JS, et al. Synthesis and biological screening of small molecule peptides based on the amino acid sequence of thymosin β4. J Korean Soc Appl Biol Chem. 2015;58:651–8.

    Article  CAS  Google Scholar 

  182. Memdouh S, Gavrilović I, Ng K, Cowan D, Abbate V. Advances in the detection of growth hormone releasing hormone synthetic analogs. Drug Test Anal. 2021;13:1871–87.

    Article  CAS  PubMed  Google Scholar 

  183. Pawar K, Kolli CS, Rangari VK, Babu RJ. Transdermal iontophoretic delivery of lysine-proline-valine (KPV) peptide across microporated human skin. J Pharm Sci. 2017;106:1814–20.

    Article  CAS  PubMed  Google Scholar 

  184. Medina-Cruz D, Saleh B, Vernet-Crua A, Ajo A, Roy AK, Webster TJ. Drug-delivery nanocarriers for skin wound-healing applications. Wound Heal Tissue Repair, Regen Diabetes. Elsevier; 2020. p. 439–88.

  185. Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational system of lipid-based nanocarriers and biodegradable polymers for wound healing: an updated review. J Funct Biomater. 2023;14:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing–a review. int J Biol Macromol. 2024;267:131335.

  187. Krishnaswami V, Raju NS, Alagarsamy S, Kandasamy R. Novel Nanocarriers for the Treatment of Wound Healing. Curr Pharm Des. 2020;26:4591–600.

    Article  CAS  PubMed  Google Scholar 

  188. Kumar M, Hilles AR, Almurisi SHA, Bhatia A, Mahmood S. Micro and nano-carriers-based pulmonary drug delivery system: their current updates, challenges, and limitations–A review. JCIS Open. 2023;12:100095.

  189. Yu N, Wang X, Qiu L, Cai T, Jiang C, Sun Y, et al. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem Eng J. 2020;380: 122582.

    Article  CAS  Google Scholar 

  190. Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A. Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision. Curr Pharm Des. 2023;29:3532–45.

    Article  CAS  PubMed  Google Scholar 

  191. Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol. 2022;74:103533.

  192. Kumar M, Kumar D, Kumar S, Kumar A, Mandal UK. A Recent Review on Bio-availability Enhancement of Poorly Water-soluble Drugs by using Bioenhancer and Nanoparticulate Drug Delivery System. Curr Pharm Des. 2022;28:3212–24.

    Article  CAS  PubMed  Google Scholar 

  193. Majumdar M, Shivalkar S, Pal A, Verma ML, Sahoo AK, Roy DN. Nanotechnology for enhanced bioactivity of bioactive compounds. Biotechnol Prod Bioact Compd. Elsevier; 2020. p. 433–66.

  194. Zhang Z, Tsai P, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2013;5:205–18.

    Article  CAS  PubMed  Google Scholar 

  195. Chatterjee S, Ghosal K, Kumar M, Mahmood S, Thomas S. A detailed discussion on interpenetrating polymer network (IPN) based drug delivery system for the advancement of health care system. J Drug Deliv Sci Technol. 2022;79:104095.

  196. Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carr Syst. 2009;26:523–80.

  197. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019. https://doi.org/10.1155/2019/3702518.

  198. Chauhan N, Kumar M, Chaurasia S, Garg Y, Chopra S, Bhatia A. A comprehensive review on drug therapies and nanomaterials used in orthodontic treatment. Curr Pharm Des. 2023;29:154–3165.

  199. Matei A-M, Caruntu C, Tampa M, Georgescu SR, Matei C, Constantin MM, et al. Applications of nanosized-lipid-based drug delivery systems in wound care. Appl Sci. 2021;11:4915.

    Article  CAS  Google Scholar 

  200. Kumar M, Mandal UK, Mahmood S. Novel drug delivery system. Adv Mod Approaches Drug Deliv [Internet]. 2023 [cited 2023 Aug 8];1–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323916684000125.

  201. Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol drug Deliv. 2014;1:1–50.

    Google Scholar 

  202. Wang W, Lu K, Yu C, Huang Q, Du Y-Z. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology. 2019;17:1–15.

    Article  Google Scholar 

  203. Kumar M, Dogra R, Mandal UK. Novel Formulation Approaches Used for the Management of Osteoarthritis: A Recent Review. Curr Drug Deliv. 2023;20:841–56.

    Article  CAS  PubMed  Google Scholar 

  204. Ahmed KS, Hussein SA, Ali AH, Korma SA, Lipeng Q, Jinghua C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27:742–61.

    Article  CAS  PubMed  Google Scholar 

  205. Koppa Raghu P, Bansal KK, Thakor P, Bhavana V, Madan J, Rosenholm JM, et al. Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals. 2020;13:167.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Gera S, Kankuri E, Kogermann K. Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology. Pharmacol Ther. 2022;232: 107990.

    Article  CAS  PubMed  Google Scholar 

  207. Tuncer Degim I, Celebi N. Controlled delivery of peptides and proteins. Curr Pharm Des. 2007;13:99–117.

    Article  PubMed  Google Scholar 

  208. Cheng R, Liu L, Xiang Y, Lu Y, Deng L, Zhang H, et al. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials. 2020;232: 119706.

    Article  CAS  PubMed  Google Scholar 

  209. Dawoud MHS, Yassin GE, Ghorab DM, Morsi NM. Insulin mucoadhesive liposomal gel for wound healing: a formulation with sustained release and extended stability using quality by design approach. AAPS PharmSciTech. 2019;20:1–15.

    Article  CAS  Google Scholar 

  210. Berry-Kilgour C, Cabral J, Wise L. Advancements in the delivery of growth factors and cytokines for the treatment of cutaneous wound indications. Adv wound care. 2021;10:596–622.

    Article  Google Scholar 

  211. Abdelfattah S, Nasr M, Ali A, Geneidi A. Vesicular systems used for wound healing. Arch Pharm Sci Ain Shams Univ. 2021;5:184–203.

    Google Scholar 

  212. Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine Nanotechnology, Biol Med. 2018;14:2023–50.

    Article  CAS  Google Scholar 

  213. Allaw M, Pleguezuelos-Villa M, Manca ML, Caddeo C, Aroffu M, Nacher A, et al. Innovative strategies to treat skin wounds with mangiferin: Fabrication of transfersomes modified with glycols and mucin. Nanomedicine. 2020;15:1671–85.

    Article  CAS  PubMed  Google Scholar 

  214. Ag Seleci D. Design and application of niosomal drug delivery systems. 2017.

  215. Feng C, Lu G, Li Y, Huang X. Self-assembly of amphiphilic homopolymers bearing ferrocene and carboxyl functionalities: effect of polymer concentration, β-cyclodextrin, and length of alkyl linker. Langmuir. 2013;29:10922–31.

    Article  CAS  PubMed  Google Scholar 

  216. Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, et al. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 2014;205:187–206.

    Article  CAS  PubMed  Google Scholar 

  217. Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.

    Article  PubMed  Google Scholar 

  218. Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, et al. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int J Nanomedicine. 2021;16:6983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chen S. Dermal delivery of Centella asiatica using hyaluronic acid niosomal system for wound healing. ResearchSpace@ Auckland; 2022.

  220. Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): physical and pharmaceutical chemistry. Adv Colloid Interface Sci. 1995;58:1–55.

    Article  CAS  Google Scholar 

  221. Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, et al. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers. Int J Mol Sci. 2020;21:6961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int J Mol Sci. 2022;23:9668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Elmowafy M. Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surfaces B Biointerfaces. 2021;203: 111748.

    Article  CAS  PubMed  Google Scholar 

  224. Prabha J, Kumar M, Kumar D, Chopra S, Bhatia A. Nano-platform strategies of herbal components for the management of rheumatoid arthritis: a review on the battle for next-generation formulations. Curr Drug Deliv. 2023.

  225. Godin B, Touitou E. Ethosomes: new prospects in transdermal delivery. Crit Rev Ther drug Carr Syst. 2003;20:63–102.

  226. Mbah CC, Builders PF, Attama AA. Nanovesicular carriers as alternative drug delivery systems: ethosomes in focus. Expert Opin Drug Deliv. 2014;11:45–59.

    Article  CAS  PubMed  Google Scholar 

  227. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res. 2010;1:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif cells, nanomedicine, Biotechnol. 2015;43:282–90.

    Article  CAS  Google Scholar 

  229. Kandregula B, Narisepalli S, Chitkara D, Mittal A. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer. Mol Pharm. 2022;19:1977–98.

    Article  CAS  PubMed  Google Scholar 

  230. Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, et al. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother. 2023;165: 115048.

    Article  CAS  PubMed  Google Scholar 

  231. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ramezanpour S, Tavatoni P, Akrami M, Navaei-Nigjeh M, Shiri P. Potential wound healing of PLGA nanoparticles containing a novel L-Carnitine–GHK peptide conjugate. J Nanomater. 2022;2022. https://doi.org/10.1155/2022/6165759.

  233. Yeboah A, Cohen RI, Faulknor R, Schloss R, Yarmush ML, Berthiaume F. The development and characterization of SDF1α-elastin-like-peptide nanoparticles for wound healing. J Control release. 2016;232:238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Papaioannou A, Liakopoulou A, Papoulis D, Gianni E, Gkolfi P, Zygouri E, et al. Effect of Peptides on the Synthesis, Properties and Wound Healing Capacity of Silver Nanoparticles. Pharmaceutics. 2023;15:2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sun L, Li A, Hu Y, Li Y, Shang L, Zhang L. Self-assembled fluorescent and antibacterial GHK-Cu nanoparticles for wound healing applications. Part Part Syst Charact. 2019;36:1800420.

    Article  Google Scholar 

  236. Wu L, Chen Y, Zeng G, Mao N, Li N, Li L, et al. Supramolecular peptide hydrogel doped with nanoparticles for local siRNA delivery and diabetic wound healing. Chem Eng J. 2023;457: 141244.

    Article  CAS  Google Scholar 

  237. Teng R, Yang Y, Zhang Z, Yang K, Sun M, Li C, et al. In situ enzyme‐induced self‐assembly of antimicrobial‐antioxidative peptides to promote wound healing. Adv Funct Mater. 2023;33:2214454.

  238. Arab WT, Niyas AM, Seferji K, Susapto HH, Hauser CAE. Evaluation of peptide nanogels for accelerated wound healing in normal micropigs. Front Nanosci Nanotech. 2018;4:1–9.

  239. Li X, Fan R, Tong A, Yang M, Deng J, Zhou L, et al. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int J Pharm. 2015;495:560–71.

    Article  CAS  PubMed  Google Scholar 

  240. Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, et al. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. J Nanobiotechnology. 2021;19:1–18.

    Article  Google Scholar 

  241. Nanditha CK, Kumar GSV. Bioactive peptides laden nano and micro-sized particles enriched ECM inspired dressing for skin regeneration in diabetic wounds. Mater Today Bio. 2022;14: 100235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Santhini E, Parthasarathy R, Shalini M, Dhivya S, Mary LA, Padma VV. Bio inspired growth factor loaded self assembling peptide nano hydrogel for chronic wound healing. Int J Biol Macromol. 2022;197:77–87.

    Article  CAS  PubMed  Google Scholar 

  243. Li Y, Xu T, Tu Z, Dai W, Xue Y, Tang C, et al. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics. 2020;10:4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Fu C, Qi Z, Zhao C, Kong W, Li H, Guo W, et al. Enhanced wound repair ability of arginine-chitosan nanocomposite membrane through the antimicrobial peptides-loaded polydopamine-modified graphene oxide. J Biol Eng. 2021;15:17.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Sun T, Zhan B, Zhang W, Qin D, Xia G, Zhang H, et al. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine. 2018;13:5771–86.

  246. Sun H, Wang Y, He T, He D, Hu Y, Fu Z, et al. Hollow polydopamine nanoparticles loading with peptide RL-QN15: a new pro-regenerative therapeutic agent for skin wounds. J Nanobiotechnology. 2021;19:1–20.

    Article  Google Scholar 

  247. Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and perspectives in chemical synthesis of highly hydrophobic peptides. Front Bioeng Biotechnol. 2020;8:162.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, et al. Sustainability challenges in peptide synthesis and purification: from R&D to production. J Org Chem. 2019;84:4615–28.

    Article  CAS  PubMed  Google Scholar 

  249. Svenson J, Stensen W, Brandsdal B-O, Haug BE, Monrad J, Svendsen JS. Antimicrobial peptides with stability toward tryptic degradation. Biochemistry. 2008;47:3777–88.

    Article  CAS  PubMed  Google Scholar 

  250. Palm C, Jayamanne M, Kjellander M, Hällbrink M. Peptide degradation is a critical determinant for cell-penetrating peptide uptake. Biochim Biophys Acta (BBA)-Biomembranes. 2007;1768:1769–76.

    Article  CAS  PubMed  Google Scholar 

  251. Moncla BJ, Pryke K, Rohan LC, Graebing PW. Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol. 2011;2:404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Starr CG, Wimley WC. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta (BBA)-Biomembranes. 2017;1859:2319–26.

    Article  CAS  PubMed  Google Scholar 

  253. Zhang X, Li X, Zhao Y, Zheng Q, Wu Q, Yu Y. Nanocarrier system: An emerging strategy for bioactive peptide delivery. Front Nutr. 2022;9:1050647.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Zhang T, Luo X, Xu K, Zhong W. Peptide-containing nanoformulations: Skin barrier penetration and activity contribution. Adv Drug Deliv Rev. 2023;203:115139.

  255. Dunshee LC, Sullivan MO, Kiick KL. Therapeutic nanocarriers comprising extracellular matrix-inspired peptides and polysaccharides. Expert Opin Drug Deliv. 2021;18:1723–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hwang J, Kiick KL, Sullivan MO. Collagen-mimetic peptides for delivery of therapeutics in chronic wounds healing application. 2022.

  257. Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides. 2011;32:173–87.

    Article  CAS  PubMed  Google Scholar 

  258. Han H, Li S, Xu M, Zhong Y, Fan W, Xu J, et al. Polymer-and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev. 2023;196: 114770.

    Article  CAS  PubMed  Google Scholar 

  259. Kanaujia KA, Mishra N, Rajinikanth PS, Saraf SA. Antimicrobial peptides as antimicrobials for wound care management: a comprehensive review. J Drug Deliv Sci Technol. 2024;95:105570.

  260. Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater. 2024;35:181–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Deptuła M, Zawrzykraj M, Sawicka J, Banach-Kopeć A, Tylingo R, Pikuła M. Application of 3D-printed hydrogels in wound healing and regenerative medicine. Biomed Pharmacother. 2023;167: 115416.

    Article  PubMed  Google Scholar 

  262. Qin M, Guo Y, Su F, Huang X, Qian Q, Zhou Y, et al. High-strength, fatigue-resistant, and fast self-healing antibacterial nanocomposite hydrogels for wound healing. Chem Eng J. 2023;455: 140854.

    Article  CAS  Google Scholar 

  263. Yi X, He J, Wei X, Li H, Liu X, Cheng F. A polyphenol and ε-polylysine functionalized bacterial cellulose/PVA multifunctional hydrogel for wound healing. Int J Biol Macromol. 2023;247: 125663.

    Article  CAS  PubMed  Google Scholar 

  264. Chen X, Zhang M, Chen S, Wang X, Tian Z, Chen Y, et al. Peptide-modified chitosan hydrogels accelerate skin wound healing by promoting fibroblast proliferation, migration, and secretion. Cell Transplant. 2017;26:1331–40.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Zhu J, Han H, Li F, Wang X, Yu J, Qin X, et al. Peptide-functionalized amino acid-derived pseudoprotein-based hydrogel with hemorrhage control and antibacterial activity for wound healing. Chem Mater. 2019;31:4436–50.

    Article  CAS  Google Scholar 

  266. Xu T, Tian Y, Zhang R, Yu B, Cong H, Shen Y. Hydrogel vectors based on peptide and peptide-like substances: For treating bacterial infections and promoting wound healing. Appl Mater Today. 2021;25: 101224.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, India, for providing the research facilities. The authors also thank the Indian Council of Medical Research, New Delhi, India.

Funding

Research grant (5/8–4/5/Env/2020-NCD-II Dated 22/12/2021) Under Indian Council of Medical Research (ICMR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Dikshant and Mohit Kumar: Writing-Original draft preparation, collecting information, methodology, Devesh Kumar and Yogesh Garg: Conceptualization, collecting information, revising draft, Amit Bhatia and Shruti Chopra: Revising draft, finalizing the manuscript.

Corresponding author

Correspondence to Amit Bhatia.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Kumar, D., Kumar, D. et al. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 25, 108 (2024). https://doi.org/10.1208/s12249-024-02827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02827-5

Keywords

Navigation