Skip to main content

Advertisement

Log in

Nanoparticulate Systems for Growth Factor Delivery

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The field of nanotechnology, which aims to control and utilize matter generally in 1–100 nm range, has been at the forefront of pharmaceutical development. Nanoparticulate delivery systems, with their potential to control drug release profiles, prolonging the presence of drugs in circulation, and to target drugs to a specific site, hold tremendous promise as delivery strategies for therapeutics. Growth factors are endogenous polypeptides that initiate intracellular signals to regulate cellular activities, such as proliferation, migration and differentiation. With improved understanding of their roles in physiopathology and expansion of their availability through recombinant technologies, growth factors are becoming leading therapeutic candidates for tissue engineering approaches. However, the outcome of growth factor therapeutics largely depends on the mode of their delivery due to their rapid degradation in vivo, and non-specific distribution after systemic administration. In order to overcome these impediments, nanoparticulate delivery systems are being harnessed for spatiotemporal controlled delivery of growth factors. This review presents recent advances and some disadvantages of various nanoparticulate systems designed for effective intact growth factor delivery. The therapeutic applications of growth factors delivered by such systems are reviewed, especially for bone, skin and nerve regeneration as well as angiogenesis. Finally, future challenges and directions in the field are presented in addition to the current limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anitua E, Sanchez M, Orive G, Andia I. Delivering growth factors for therapeutics. Trends Pharmacol Sci 2008;29:37–41. doi:10.1016/j.tips.2007.10.010.

    Article  PubMed  CAS  Google Scholar 

  2. Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 2003;20:1103–12. doi:10.1023/A:1025034925152.

    Article  PubMed  CAS  Google Scholar 

  3. Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000;17:497–504. doi:10.1023/A:1007502828372.

    Article  PubMed  CAS  Google Scholar 

  4. Golden JD, Jones AL, Bucholz RW, Bosse MJ, Lyon TR, Webb LX, Valentin-Opran A. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. J Bone Joint Surg Am 2008;90:1168–9.

    Google Scholar 

  5. Bowen-Pope DF, Malpass TW, Foster DM, Ross R. Platelet-derived growth factor in vivo: levels, activity, and rate of clearance. Blood 1984;64:458–69.

    PubMed  CAS  Google Scholar 

  6. Edelman ER, Nugent MA, Karnovsky MJ. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci USA 1993;90:1513–7. doi:10.1073/pnas.90.4.1513.

    Article  PubMed  CAS  Google Scholar 

  7. Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 1993;10:141–62. doi:10.1016/0169-409X(93)90046-7.

    Article  CAS  Google Scholar 

  8. Agarwal A, Mallapragada SK. Synthetic sustained gene delivery systems. Curr Top Med Chem 2008;8:311–30. doi:10.2174/156802608783790938.

    Article  PubMed  CAS  Google Scholar 

  9. Moshfeghi AA, Peyman GA. Micro- and nanoparticulates. Adv Drug Deliv Rev 2005;57:2047–52. doi:10.1016/j.addr.2005.09.006.

    Article  PubMed  CAS  Google Scholar 

  10. Kim K, Fisher JP. Nanoparticle technology in bone tissue engineering. J Drug Target 2007;15:241–52. doi:10.1080/10611860701289818.

    Article  PubMed  CAS  Google Scholar 

  11. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55:329–47. doi:10.1016/S0169-409X(02)00228-4.

    Article  PubMed  CAS  Google Scholar 

  12. Wang AZ, Gu F, Zhang LF, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 2008;8:1063–70. doi:10.1517/14712598.8.8.1063.

    Article  PubMed  CAS  Google Scholar 

  13. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283–318.

    PubMed  CAS  Google Scholar 

  14. Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 2007;1:4–24. doi:10.1002/term.2.

    Article  PubMed  CAS  Google Scholar 

  15. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotech 2006;24:1211–7. doi:10.1038/nbt1006-1211.

    Article  CAS  Google Scholar 

  16. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2007;83:761–9. doi:10.1038/sj.clpt.6100400.

    Article  PubMed  CAS  Google Scholar 

  17. Bawa R. Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Business 2008;5:135–55.

    Google Scholar 

  18. Wang G, Uludağ H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Exp Opin Drug Deliv 2008;5:499–515. doi:10.1517/17425247.5.5.499.

    Article  CAS  Google Scholar 

  19. Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 1998;46:255–63. doi:10.1016/S0939-6411(98)00038-1.

    Article  PubMed  CAS  Google Scholar 

  20. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001;40:539–51. doi:10.2165/00003088-200140070-00005.

    Article  PubMed  CAS  Google Scholar 

  21. Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 2002;28:S13–6.

    Google Scholar 

  22. Pitt CG. The controlled parenteral delivery of polypeptides and proteins. Int J Pharm 1990;59:173–96. doi:10.1016/0378–5173(90)90108-G.

    Article  CAS  Google Scholar 

  23. Thassu D, Deleers M, Pathak Y. Nanoparticulate drug delivery systems. New York: Informa Healthcare; 2007.

    Google Scholar 

  24. Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947–67. doi:10.1016/j.biomaterials.2007.06.011.

    Article  PubMed  CAS  Google Scholar 

  25. Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 2005;83:97–105. doi:10.1111/j.1440–1711.2005.01315.x.

    Article  PubMed  CAS  Google Scholar 

  26. Lasch J, Weissig V, Brandl M. Preparation of liposomes. In: Torchilin VP, Weissig V, editors. Liposomes: a practical approach. Oxford: Oxford University Press; 2003. p. 3–23.

    Google Scholar 

  27. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007;59:478–90. doi:10.1016/j.addr.2007.04.007.

    Article  PubMed  CAS  Google Scholar 

  28. Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates–A review. J Control Release 2008;128:185–99. doi:10.1016/j.jconrel.2008.02.007.

    Article  PubMed  CAS  Google Scholar 

  29. Li H, Song JH, Park JS, Han K. Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int J Pharm 2003;258:11–9. doi:10.1016/S0378-5173(03)00158-3.

    Article  PubMed  CAS  Google Scholar 

  30. Cimini Saddi KRG, Alves GD, Paulino TP, Ciancaglini P, Alves JB. Epidermal growth factor in liposomes may enhance osteobalst recruitment during tooth movement in rats. Angle Orthod 2008;78:604–9. doi:10.2319/0003-3219(2008)078[0604:EGFILM]2.0.CO;2.

    Article  Google Scholar 

  31. Matsuo T, Sugita T, Kubo T, Yasunaga Y, Ochi M, Murakami T. Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res A 2003;66A:747–54. doi:10.1002/jbm.a.10002.

    Article  CAS  Google Scholar 

  32. Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T, Murakami T, Ochi M. Efficiency of magnetic liposomal transforming growth factor-β1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res A 2005;73A:255–63. doi:10.1002/jbm.a.30187.

    Article  CAS  Google Scholar 

  33. Li F, Wang JY, Sun JY. Hepatocyte growth factor encapsulated in targeted liposomes modified with cyclic ARG-GLY-ASP peptides promotes the remission of liver cirrhosis. J Hepatol 2008;48:S189.

    Article  Google Scholar 

  34. Li F, Sun JY, Wang JY, Du SL, Lu WY, Liu M, Xie C, Shi JY. Effect of hepatocyte growth factor encapsulated in targeted liposomes on liver cirrhosis. J Control Release 2008;131:77–82. doi:10.1016/j.jconrel.2008.07.021.

    Article  PubMed  CAS  Google Scholar 

  35. Xie Y, Ye LY, Zhang XB, Cui W, Lou JN, Nagai T, Hou XP. Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release 2005;105:106–19. doi:10.1016/j.jconrel.2005.03.005.

    Article  PubMed  CAS  Google Scholar 

  36. Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH. Core/shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 2006;7:2362–7. doi:10.1021/bm060362k.

    Article  PubMed  CAS  Google Scholar 

  37. Haidar ZS, Azari F, Hamdy RC, Tabrizian M. Modulated release of OP-1 and enhanced preosteoblast differentiation using a core-shell nanoparticulate system. J Biomed Mater Res A 2009. doi:10.1002/jbm.a.32292.

    Google Scholar 

  38. Almeida AJ, Runge S, Müller RH. Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 1997;149:255–65. doi:10.1016/S0378-5173(97)04885-0.

    Article  CAS  Google Scholar 

  39. Hu FQ, Hong Y, Yuan H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int J Pharm 2004;273:29–35. doi:10.1016/j.ijpharm.2003.12.016.

    Article  PubMed  CAS  Google Scholar 

  40. Chiellini F. Perspectives on: in vitro evaluation of biomedical polymers. J Bioact Compat Polym 2006;21:257–71. doi:10.1177/0883911506064672.

    Article  CAS  Google Scholar 

  41. Chiellini F, Piras AM, Errico C, Chiellini E. Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomed 2008;3:367–93. doi:10.2217/17435889.3.3.367.

    Article  PubMed  CAS  Google Scholar 

  42. Eley JG, Mathew P. Preparation and release characteristics of insulin and insulin-like growth factor-one from polymer nanoparticles. J Microencapsul 2007;24:225–34. doi:10.1080/02652040601162335.

    Article  PubMed  CAS  Google Scholar 

  43. Chung YI, Tae G, Yuk SH. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors. Biomaterials 2006;27:2621–6. doi:10.1016/j.biomaterials.2005.11.043.

    Article  PubMed  CAS  Google Scholar 

  44. Wei G, Jin Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28:2087–96. doi:10.1016/j.biomaterials.2006.12.028.

    Article  PubMed  CAS  Google Scholar 

  45. Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ. Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small 2008;4:1769–77. doi:10.1002/smll.200800806.

    Article  PubMed  CAS  Google Scholar 

  46. Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release 2007;121:91–9. doi:10.1016/j.jconrel.2007.05.029.

    Article  PubMed  CAS  Google Scholar 

  47. Lu W, Park TG. Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problems. PDA J Pharm Sci Technol 1995;49:13–9.

    PubMed  CAS  Google Scholar 

  48. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol 2001;5:447–51. doi:10.1016/S1367-5931(00)00227-1.

    Article  PubMed  CAS  Google Scholar 

  49. Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 2001;19:255–65. doi:10.1016/S0167-7799(01)01665-1.

    Article  PubMed  CAS  Google Scholar 

  50. Gou ML, Dai M, Gu YC, Li XY, Wen YJ, Yang L, Wang K, Wei YQ, Qian ZY. Basic fibroblast growth factor loaded biodegradable PCL-PEG-PCL copolymeric nanoparticles: preparation, in vitro release and immunogenicity study. J Nanosci Nanotechnol 2008;8:2357–61. doi:10.1166/jnn.2008.310.

    Article  PubMed  CAS  Google Scholar 

  51. Gou ML, Huang MJ, Qian ZY, Yang L, Dai M, Li XY, Wang K, Wen YJ, Li J, Zhao X, Wei YQ. Preparation of anionic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymeric nanoparticles as basic protein antigen carrier. Growth Factors 2007;25:202–8. doi:10.1080/08977190701671613.

    Article  CAS  Google Scholar 

  52. Gou M, Dai M, Li X, Yang L, Huang M, Wang Y, Kan B, Lu Y, Wei Y, Qian Z. Preparation of mannan modified anionic PCL-PEG-PCL nanoparticles at one-step for bFGF antigen delivery to improve humoral immunity. Colloids Surf B Biointerfaces 2008;64:135–9. doi:10.1016/j.colsurfb.2007.12.014.

    Article  PubMed  CAS  Google Scholar 

  53. Ramge P, Unger RE, Oltrogge JB, Zenker D, Begley D, Kreuter J, von Briesen H. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. Eur J Neurosci 2000;12:1931–40. doi:10.1046/j.1460-9568.2000.00078.x.

    Article  PubMed  CAS  Google Scholar 

  54. Kurakhmaeva KB, Voronina TA, Kapica IG, Kreuter J, Nerobkova LN, Seredenin SB, Balabanian VY, Alyautdin RN. Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80. Bull Exp Biol Med 2008;145:259–62. doi:10.1007/s10517-008-0065-y.

    Article  PubMed  CAS  Google Scholar 

  55. Park IK, Seo SJ, Akashi M, Akaike T, Cho CS. Controlled release of epidermal growth factor (EGF) from EGF-loaded polymeric nanoparticles composed of polystyrene as core and poly(methacrylic acid) as corona in vitro. Arch Pharm Res 2003;26:649–52. doi:10.1007/BF02976715.

    Article  PubMed  CAS  Google Scholar 

  56. Lin W, Garnett MC, Davis SS, Schacht E, Ferruti P, Illum L. Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. J Control Release 2001;71:117–26. doi:10.1016/S0168-3659(01)00209-7.

    Article  PubMed  CAS  Google Scholar 

  57. Lin W, Garnett MC, Schacht E, Davis SS, Illum L. Preparation and in vitro characterization of HSA-mPEG nanoparticles. Int J Pharm 1999;189:161–70. doi:10.1016/S0378-5173(99)00253-7.

    Article  PubMed  CAS  Google Scholar 

  58. Lin W, Coombes AGA, Davies SS, Illum L. Preparation of sub-100 nm human serum albumin nanoparticles using a pH-coacervation method. J Drug Target 1993;1:237–43. doi:10.3109/10611869308996081.

    Article  PubMed  CAS  Google Scholar 

  59. Segura S, Gamazo C, Irache JM, Espuelas S. Gamma interferon loaded onto albumin nanoparticles: In vitro and in vivo activities against Brucella abortus. Antimicrob Agents Chemother 2007;51:1310–4. doi:10.1128/AAC.00890-06.

    Article  PubMed  CAS  Google Scholar 

  60. Segura S, Espuelas S, Renedo MJ, Irache JM. Potential of albumin nanoparticles as carriers for interferon gamma. Drug Dev Ind Pharm 2005;31:271–80.

    PubMed  CAS  Google Scholar 

  61. Wang G, Siggers K, Zhang S, Jiang H, Xu Z, Zernicke R, Matyas J, Uludağ H. Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharm Res 2008;25:2896–909. doi:10.1007/s11095-008-9692-2.

    Article  PubMed  CAS  Google Scholar 

  62. Zhang S, Wang G, Lin X, Chatzinikolaidou M, Jennissen HP, Laub M, Uludağ H. Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnol Prog 2008;24:945–56. doi:10.1002/btpr.12.

    Article  PubMed  CAS  Google Scholar 

  63. Cetin M, Aktas Y, Vural I, Capan Y, Dogan LA, Duman M, Dalkara T. Preparation and in vitro evaluation of bFGF-loaded chitosan nanoparticles. Drug Deliv 2007;14:525–9. doi:10.1080/10717540701606483.

    Article  PubMed  CAS  Google Scholar 

  64. Huang M, Vitharana SN, Peek LJ, Coop T, Berkland C. Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules 2007;8:1607–14. doi:10.1021/bm061211k.

    Article  PubMed  CAS  Google Scholar 

  65. Huang M, Berkland C. Controlled release of Repifermin® from polyelectrolyte complexes stimulates endothelial cell proliferation. J Pharm Sci 2009;98:268–80. doi:10.1002/jps.21412.

    Article  PubMed  CAS  Google Scholar 

  66. Itoh Y, Matsusaki M, Kida T, Akashi M. Preparation of biodegradable hollow nanocapsules by silica template method. Chem Lett 2004;33:1552–3. doi:10.1246/cl.2004.1552.

    Article  CAS  Google Scholar 

  67. Itoh Y, Matsusaki M, Kida T, Akashi M. Locally controlled release of basic fibroblast growth factor from multilayered capsules. Biomacromolecules 2008;9:2202–6. doi:10.1021/bm800321w.

    Article  PubMed  CAS  Google Scholar 

  68. Chen FM, Wu ZF, Jin Y, Wang QT, Du Y, Wang GF. Preparation and property of recombinant human bone morphogenetic protein-2 loaded hydrogel nanospheres and their biological effects on the proliferation and differentiation of bone mesenchymal stem cells. Shanghai Kou Qiang Yi Xue 2005;14:485–9.

    PubMed  CAS  Google Scholar 

  69. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008;2:81–96. doi:10.1002/term.74.

    Article  PubMed  CAS  Google Scholar 

  70. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47:113–1. doi:10.1016/S0169-409X(00)00124-1.

    Article  PubMed  CAS  Google Scholar 

  71. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006;112:630–48. doi:10.1016/j.pharmthera.2006.05.006.

    Article  PubMed  CAS  Google Scholar 

  72. Lee JS, Go DH, Bae JW, Lee SJ, Park KD. Heparin conjugated polymeric micelle for long-terin delivery of basic fibroblast growth factor. J Control Release 2007;117:204–9. doi:10.1016/j.jconrel.2006.11.004.

    Article  PubMed  CAS  Google Scholar 

  73. Lee JS, Bae JW, Joung YK, Lee SJ, Han DK, Park KD. Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. Int J Pharm 2008;346:57–63. doi:10.1016/j.ijpharm.2007.06.025.

    Article  PubMed  CAS  Google Scholar 

  74. Gillies ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10:35–43. doi:10.1016/S1359-6446(04)03276-3.

    Article  PubMed  CAS  Google Scholar 

  75. Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 2008;97:123–43. doi:10.1002/jps.21079.

    Article  PubMed  CAS  Google Scholar 

  76. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005;57:2215–37. doi:10.1016/j.addr.2005.09.019.

    Article  PubMed  CAS  Google Scholar 

  77. Thomas TP, Shukla R, Kotlyar A, Liang B, Ye JY, Norris TB, Baker JR. Dendrimer-epidermal growth factor conjugate displays superagonist activity. Biomacromolecules 2008;9:603–9. doi:10.1021/bm701185p.

    Article  PubMed  CAS  Google Scholar 

  78. Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH, Fenstermaker RA, Carlsson J. Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 1996;7:7–15. doi:10.1021/bc950077q.

    Article  PubMed  CAS  Google Scholar 

  79. Yang WL, Barth RF, Adams DM, Ciesielski MJ, Fenstermaker RA, Shukla S, Tjarks W, Caligiuri MA. Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomas. Cancer Res 2002;62:6552–8.

    PubMed  CAS  Google Scholar 

  80. Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS, Tjarks W, Barth RF, Claffey K, Backer JM. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 2005;4:1423–9. doi:10.1158/1535-7163.MCT-05-0161.

    Article  PubMed  CAS  Google Scholar 

  81. Park YB, Dziak R, Genco RJ, Swihart M, Perinpanayagam H. Calcium sulfate based nanoparticles. U.S. patent 60/887,859, 2007.

  82. Pitukmanorom P, Yong TH, Ying JY. Tunable release of proteins with polymer-inorganic nanocomposite microspheres. Adv Mater 2008;20:3504–9. doi:10.1002/adma.200800930.

    Article  CAS  Google Scholar 

  83. Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transplant 2004;13:451–61. doi:10.3727/000000004783983774.

    Article  PubMed  Google Scholar 

  84. Vu TQ, Maddipati R, Blute TA, Nehilla BJ, Nusblat L, Desai TA. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano Lett 2005;5:603–7. doi:10.1021/nl047977c.

    Article  PubMed  CAS  Google Scholar 

  85. Vasir JK, Reddy MK, Labhasetwar VD. Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 2005;1:47–64. doi:10.2174/1573413052953110.

    Article  CAS  Google Scholar 

  86. Wang D, Miller SC, Kopeckova P, Kopecek J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 2005;57:1049–76. doi:10.1016/j.addr.2004.12.011.

    Article  PubMed  CAS  Google Scholar 

  87. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002;28:1–13. doi:10.1081/DDC-120001481.

    Article  PubMed  CAS  Google Scholar 

  88. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81. doi:10.1016/S0169-409X(00)00122-8.

    Article  PubMed  CAS  Google Scholar 

  89. Petri B, Bootz A, Khalansky A, Hekmatara T, Müller R, Uhl R, Kreuter J, Gelperina S. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: Revisiting the role of surfactants. J Control Release 2007;117:51–8. doi:10.1016/j.jconrel.2006.10.015.

    Article  PubMed  CAS  Google Scholar 

  90. Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009;23:35–58. doi:10.2165/0023210-200923010-00003.

    Article  PubMed  CAS  Google Scholar 

  91. Butte AM, Jones HC, Abbot NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990;429:47–62.

    Google Scholar 

  92. Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, Vyas SP. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45–53. doi:10.1080/10611860600612953.

    Article  PubMed  CAS  Google Scholar 

  93. Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007;118:54–8. doi:10.1016/j.jconrel.2006.12.012.

    Article  PubMed  CAS  Google Scholar 

  94. Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, Kreuter J, Langer K. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006;317:1246–53. doi:10.1124/jpet.105.097139.

    Article  PubMed  CAS  Google Scholar 

  95. Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, Meijer DKF, Poelstra K. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J Biol Chem 2000;275:12743–51. doi:10.1074/jbc.275.17.12743.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang S, Gangal G, Uludağ H. ‘Magic bullets’ for bone diseases: progress in rational design of bone-seeking medicinal agents. Chem Soc Rev 2007;36:507–31. doi:10.1039/b512310k.

    Article  PubMed  CAS  Google Scholar 

  97. Choi SW, Kim JH. Design of surface-modified poly(d,l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release 2007;122:24–30. doi:10.1016/j.jconrel.2007.06.003.

    Article  PubMed  CAS  Google Scholar 

  98. Hengst V, Oussoren C, Kissel T, Storm G. Bone targeting potential of bisphosphonate-targeted liposomes: Preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm 2007;331:224–7. doi:10.1016/j.ijpharm.2006.11.024.

    Article  PubMed  CAS  Google Scholar 

  99. Hirabayashi H, Fujisaki J. Bone-specific drug delivery systems - approaches via chemical modification of bone-seeking agents. Clin Pharmacokinet 2003;42:1319–30. doi:10.2165/00003088-200342150-00002.

    Article  PubMed  CAS  Google Scholar 

  100. Cornell CN. Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am 1999;30:591–8. doi:10.1016/S0030-5898(05)70112-7.

    Article  PubMed  CAS  Google Scholar 

  101. Riedel GE, Valentin-Opran A. Clinical evaluation of rhBMP-2/ACS in orthopedic trauma: a progress report. Orthopedics 1999;22:663–5.

    PubMed  CAS  Google Scholar 

  102. Luginbuehl V, Meinel L, Merkle HP, Gander B. Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm 2004;58:197–208. doi:10.1016/j.ejpb.2004.03.004.

    Article  PubMed  CAS  Google Scholar 

  103. Fu YC, Nie H, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng 2008;99:996–1006. doi:10.1002/bit.21648.

    Article  PubMed  CAS  Google Scholar 

  104. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release 2007;117:380–6. doi:10.1016/j.jconrel.2006.11.018.

    Article  PubMed  CAS  Google Scholar 

  105. Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006;97:1184–90. doi:10.1002/jcb.20796.

    Article  PubMed  CAS  Google Scholar 

  106. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1–20. doi:10.1016/S0168-3659(00)00339-4.

    Article  PubMed  CAS  Google Scholar 

  107. Blanquaert F, Barritault FD, Caruelle JP. Effects of heparan-like polymers associated with growth factors on osteoblast proliferation and phenotype expression. J Biomed Mater Res 1999;44:63–72. doi:10.1002/(SICI)1097-4636(199901)44:1<63::AID-JBM7>3.0.CO;2-S.

    Article  PubMed  CAS  Google Scholar 

  108. Park JS, Park K, Woo DG, Yang HN, Chung HM, Park KH. PLGA microsphere construct coated with TGF-β3 loaded nanoparticles for neocartilage formation. Biomacromolecules 2008;9:2162–9. doi:10.1021/bm800251x.

    Article  PubMed  CAS  Google Scholar 

  109. Jeon O, Song SJ, Yang HS, Bhang SH, Kang SW, Sung MA, Lee JH, Kim BS. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun 2008;369:774–80. doi:10.1016/j.bbrc.2008.02.099.

    Article  PubMed  CAS  Google Scholar 

  110. Park KH, Lee D, Na K. Transplantation of poly(N-isopropylacrylamide-co-vinylimidazole) hydrogel constructs composed of rabbit chondrocytes and growth factor-loaded nanoparticles for neocartilage formation. Biotechnol Lett 2009;31:337–46. doi:10.1007/s10529-008-9871-6.

    Article  PubMed  CAS  Google Scholar 

  111. Kim S, Jeon O, Lee J, Bae M, Chun HJ, Moon SH, Kwon I. Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells. J Biomed Sci 2008;15:771–7. doi:10.1007/s11373-008-9277-4.

    Article  PubMed  CAS  Google Scholar 

  112. Degim Z. Use of microparticulate systems to accelerate skin wound healing. J Drug Target 2008;16:437–48. doi:10.1080/10611860802088572.

    Article  PubMed  CAS  Google Scholar 

  113. Holland TA, Tessmar JKV, Tabata Y, Mikos AG. Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 2004;94:101–14. doi:10.1016/j.jconrel.2003.09.007.

    Article  PubMed  CAS  Google Scholar 

  114. Han K, Lee KD, Gao ZG, Park JS. Preparation and evaluation of poly(-lactic acid) microspheres containing rhEGF for chronic gastric ulcer healing. J Control Release 2001;75:259–69. doi:10.1016/S0168-3659(01)00400-X.

    Article  PubMed  CAS  Google Scholar 

  115. Kawai K, Suzuki S, Tabata Y, Nishimura Y. Accelerated wound healing through the incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis using a pressure-induced decubitus ulcer model in genetically diabetic mice. Br J Plast Surg 2005;58:1115–23. doi:10.1016/j.bjps.2005.04.010.

    Article  PubMed  Google Scholar 

  116. Yerushalmi N, Arad A, Margalit R. Molecular and cellular studies of hyaluronic acid-modified liposomes as bioadhesive carriers for topical drug delivery in wound healing. Arch Biochem Biophys 1994;313:267–73. doi:10.1006/abbi.1994.1387.

    Article  PubMed  CAS  Google Scholar 

  117. Maysinger D, Morinville A. Drug delivery to the nervous system. Trends Biotechnol 1997;15:410–8. doi:10.1016/S0167-7799(97)01095-0.

    Article  PubMed  CAS  Google Scholar 

  118. Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW. Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7. Brain Res 1995;705:125–35. doi:10.1016/0006-8993(95)01143-9.

    Article  PubMed  CAS  Google Scholar 

  119. Echarte MM, Bruno L, Arndt-Jovin DJ, Jovin TM, Pietrasanta LI. Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths. FEBS Lett 2007;581:2905–13. doi:10.1016/j.febslet.2007.05.041.

    Article  PubMed  CAS  Google Scholar 

  120. Song BW, Vinters HV, Wu DF, Pardridge WM. Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther 2002;301:605–10. doi:10.1124/jpet.301.2.605.

    Article  PubMed  CAS  Google Scholar 

  121. Sakai T, Kuno N, Takamatsu F, Kimura E, Kohno H, Okano K, Kitahara K. Prolonged protective effect of basic fibroblast growth factor–impregnated nanoparticles in royal college of surgeons rats. Invest Ophthalmol Vis Sci 2007;48:3381–7. doi:10.1167/iovs.06-1242.

    Article  PubMed  Google Scholar 

  122. Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, Betbeder D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999;291:1017–22.

    PubMed  CAS  Google Scholar 

  123. Schrand AM, Braydich-Stolle LK, Schlager JJ, Dai LM, Hussain SM. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 2008;19:235104. doi:10.1088/0957-4484/19/23/235104.

    Article  CAS  Google Scholar 

  124. Pisanic TR, Blackwell JD, Shubayev VI, Finones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007;28:2572–81. doi:10.1016/j.biomaterials.2007.01.043.

    Article  PubMed  CAS  Google Scholar 

  125. Teixidó M, Giralt E. The role of peptides in blood-brain barrier nanotechnology. J Pept Sci 2008;14:163–73. doi:10.1002/psc.983.

    Article  PubMed  CAS  Google Scholar 

  126. Hirschi KK, Skalak TC, Peirce SM, Little CD. Vascular assembly in natural and engineered tissues. Ann N Y Acad Sci 2002;961:223–42.

    Article  PubMed  CAS  Google Scholar 

  127. Jeon O, Kang SW, Lim HW, Hyung Chung J, Kim BS. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(l-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 2006;27:1598–607. doi:10.1016/j.biomaterials.2005.08.030.

    Article  PubMed  CAS  Google Scholar 

  128. Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 2006;27:5836–44. doi:10.1016/j.biomaterials.2006.08.003.

    Article  PubMed  CAS  Google Scholar 

  129. Chen J, Wu H, Han D, Xie C. Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett 2006;231:169–75. doi:10.1016/j.canlet.2005.01.024.

    Article  PubMed  CAS  Google Scholar 

  130. Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N, Kiziltepe T, Sasisekharan R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 2005;436:568–72. doi:10.1038/nature03794.

    Article  PubMed  CAS  Google Scholar 

  131. Williams SR, Lepene BS, Thatcher CD, Long TE. Synthesis and characterization of poly(ethylene glycol)-glutathione conjugate self-assembled nanoparticles for antioxidant delivery. Biomacromolecules 2009;10:155–61. doi:10.1021/bm801058j.

    Article  PubMed  CAS  Google Scholar 

  132. Vonau RL, Bostrom MPG, Aspenberg P, Sams AE. Combination of growth factors inhibits bone ingrowth in the bone harvest chamber. Clin Orthop Relat Res 2001;386:243–51. doi:10.1097/00003086-200105000-00032.

    Article  PubMed  Google Scholar 

  133. Ripamonti U, Crooks J, Petit JC, Rueger DC. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein-1 and bone morphogenetic protein-2. A pilot study in Chacma baboons (Papio ursinus). Eur J Oral Sci 2001;109:241–8. doi:10.1034/j.1600-0722.2001.00041.x.

    Article  PubMed  CAS  Google Scholar 

  134. Hao XJ, Silva EA, Mansson-Broberg A, Grinnemo KH, Siddiqui AJ, Dellgren G, Wardell E, Brodin LA, Mooney DJ, Sylven C. Angiogenic effects of sequential release of VEGF-A(165) and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 2007;75:178–85. doi:10.1016/j.cardiores.2007.03.028.

    Article  PubMed  CAS  Google Scholar 

  135. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol 2001;19:1029–34. doi:10.1038/nbt1101-1029.

    Article  PubMed  CAS  Google Scholar 

  136. Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 2007;24:258–64. doi:10.1007/s11095-006-9173-4.

    Article  PubMed  CAS  Google Scholar 

  137. Raiche AT, Puleo DA. In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 2004;25:677–85. doi:10.1016/S0142-9612(03)00564-7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The studies in authors’ labs have been financially supported by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Council of Canada (NSERC) and Alberta Heritage Foundation for Medical Research (AHFMR). The authors would like to thank Mr. Guilin Wang for his contributions to nanoparticle technologies in the authors’ lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Uludağ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Uludağ, H. Nanoparticulate Systems for Growth Factor Delivery. Pharm Res 26, 1561–1580 (2009). https://doi.org/10.1007/s11095-009-9897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9897-z

KEY WORDS

Navigation