Skip to main content
Log in

On-Site Electrospinning Nanofiber Membranes Incorporating V-Shaped Organic Semiconductors for Multifunctional Diabetic Wound Dressing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Personalized wound dressings with on-site deposition, exudate suction, and reproducible sterilization are urged for treating diabetic wounds. Herein, we have developed nanofiber membranes incorporating a V-shaped photosensitizer (VPS), a donor-acceptor-donor type organic semiconductor with indacenodithienothiophene (IDTT) as the electron-donor and triphenyleno[1,2-c:7,8-c′]bis([1,2,5] -thiadiazole) (TPTz) as the electron-acceptor, for multifunctional wound dressing. The VPS-incorporated nanofiber membranes are in situ deposited on rough wounds by using a handheld electrospinning device, which offers full coverage and better affinity than gauze to stop bleeding and suck exudate rapidly. They are breathable, waterproof, and have bacteria repelling capacity due to their hydrophobicity and negative charges. Upon light irradiation, the VPS in nanofibers undergoes low aggregation-caused quenching and retains high fluorescence and reproducible photodynamic sterilization towards both Gram-positive and Gram-negative bacteria. The nanofiber dressing also promotes cell adhesion and proliferation and exhibits high security in blood biochemistry and hematology. With the above merits, the nanofiber membranes greatly reduce the expression of tumor necrosis factor α and interleukin 6 in serum and wound tissues, expediting the wound healing process. These wound dressings combine the benefits of in situ electrospinning, fiber membrane, and VPS, and will provide strategies for emergency medical operations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nam S, Mooney D. Polymeric tissue adhesives. Chem Rev. 2021;121:11336.

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Lin J, Chen L, Deng L, Cui W. Endogenous electric-field-coupled electrospun short fiber via collecting wound exudation. Adv Mater. 2022;34:2108325.

    Article  CAS  Google Scholar 

  3. Qian S, Wang J, Liu Z, Mao J, Zhao B, Mao X, Zhang L, Cheng L, Zhang Y, Sun X, Cui W. Secretory fluid-aggregated janus electrospun short fiber scaffold for wound healing. Small. 2022;18:2200799.

    Article  CAS  Google Scholar 

  4. Ge Y, Rong F, Lu Y, Wang Z, Liu J, Xu F, Chen J, Li W, Wang Y. Glucose oxidase driven hydrogen sulfide-releasing nanocascade for diabetic infection treatment. Nano Lett. 2023;23:6610.

    Article  CAS  PubMed  Google Scholar 

  5. Xiang T, Guo Q, Jia L, Yin T, Huang W, Zhang X, Zhou S. Multifunctional hydrogels for the healing of diabetic wounds. Adv Healthcare Mater. 2023;13:2301885.

    Article  Google Scholar 

  6. Qi X, Cai E, Xiang Y, Zhang C, Ge X, Wang J, Lan Y, Xu H, Hu R, Shen J. An immunomodulatory hydrogel by hyperthermia-assisted self-cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics. Adv Mater. 2023;35:2306632.

    Article  CAS  Google Scholar 

  7. Fan R, Zhao J, Yi L, Yuan J, McCarthy A, Li B, Yang G, John JV, Wan W, Zhang Y, Chen S. Anti-inflammatory peptide-conjugated silk fibroin/cryogel hybrid dual fiber scaffold with hierarchical structure promotes healing of chronic wounds. Adv Mater. 2024;36(16):e2307328. https://doi.org/10.1002/adma.202307328.

    Article  CAS  PubMed  Google Scholar 

  8. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314.

    Article  CAS  PubMed  Google Scholar 

  9. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346:941.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, Xi Y, Xue Y, Wang M, Liu Y, Guo Y, Lei B. Injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystems for efficiently treating multidrug resistant infection, skin-tumor therapy, and enhancing wound healing. Adv Funct Mater. 2021;31:2170319.

    Article  Google Scholar 

  11. Castleberry SA, Almquist BD, Li W, Reis T, Chow J, Mayner S, Hammond PT. Self-assembled wound dressings silence mmp-9 and improve diabetic wound healing in vivo. Adv Mater. 2015;28:1809.

    Article  PubMed  Google Scholar 

  12. Morton LM, Phillips TJ. Wound healing and treating wounds. J Am Acad Dermatol. 2016;74:589.

    Article  PubMed  Google Scholar 

  13. Wu J, Zhao S, Xu S, Pang X, Cai G, Wang J. Acidity-triggered charge-reversible multilayers for construction of adaptive surfaces with switchable bactericidal and bacteria-repelling functions. J Mater Chem B. 2018;6:7462.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34.

    Article  CAS  PubMed  Google Scholar 

  15. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial hydrogels. Adv Sci. 2018;5:1700527.

    Article  Google Scholar 

  16. Abdollahi Z, Zare EN, Salimi F, Goudarzi I, Tay FR, Makvandi P. Bioactive carboxymethyl starch-based hydrogels decorated with CuO nanoparticles: Antioxidant and antimicrobial properties and accelerated wound healing in vivo. Int J Mol Sci. 2021;22:2531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Wang S, Wang Z, Yao Q, Fang S, Zhou X, Yuan X, Xie J. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. J Mater Chem B. 2020;8:4846.

    Article  CAS  PubMed  Google Scholar 

  18. Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, Yeung KWK, Zheng D, Wang X, Wu S. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small. 2019;15:1900322.

    Article  Google Scholar 

  19. Jia Q, Song Q, Li P, Huang W. Rejuvenated photodynamic therapy for bacterial infections. Adv Healthcare Mater. 2019;8:1900608.

    Article  Google Scholar 

  20. Contreras A, Raxworthy MJ, Wood S, Tronci G. Hydrolytic degradability, cell tolerance and on-demand antibacterial effect of electrospun photodynamically active fibres. Pharmaceutics. 2020;12:711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yue Y, Gong X, Jiao W, Li Y, Yin X, Si Y, Yu J, Ding B. In-situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application. J Colloid Interface Sci. 2021;592:310.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Li J, Qiao Y, Liu X, Zheng Y, Li Z, Shen J, Zhang Y, Zhu S, Jiang H, Liang Y, Cui Z, Chu PK, Wu S. Rapid ferroelectric-photoexcited bacteria-killing of Bi4Ti3O12/Ti3C2Tx nanofiber membranes. Adv Fiber Mater. 2023;5:484.

    Article  CAS  PubMed  Google Scholar 

  23. Yin J, Xu L, Ahmed A. Batch preparation and characterization of electrospun porous polylactic acid-based nanofiber membranes for antibacterial wound dressing. Adv Fiber Mater. 2022;4:832.

    Article  CAS  Google Scholar 

  24. Jia Z, Gong J, Zeng Y, Ran J, Liu J, Wang K, Xie C, Lu X, Wang J. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv Funct Mater. 2021;31:2010461.

    Article  CAS  Google Scholar 

  25. Archana D, Singh BK, Dutta J, Dutta PK. Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol. 2015;73:49.

    Article  CAS  PubMed  Google Scholar 

  26. Lanno G-M, Ramos C, Preem L, Putrinš M, Laidmäe I, Tenson T, Kogermann K. Antibacterial porous electrospun fibers as skin scaffolds for wound healing applications. ACS Omega. 2020;5:30011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao R, Li X, Sun B, Tong Y, Jiang Z, Wang C. Nitrofurazone-loaded electrospun plla/sericin-based dual-layer fiber mats for wound dressing applications. RSC Adv. 2015;5:16940.

    Article  CAS  Google Scholar 

  28. Yan X, Yu M, Ramakrishna S, Russell SJ, Long Y. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale. 2019;11:19166.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Zhao Y, Hu P, Liu J, Liu X, Hu M, Cui Z, Wang N, Niu Z, Xiang H, Long Y. Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chem Eng J. 2020;395: 125089.

    Article  CAS  Google Scholar 

  30. Xu SC, Qin CC, Yu M, Dong RH, Yan X, Zhao H, Han WP, Zhang HD, Long YZ. A battery-operated portable handheld electrospinning apparatus. Nanoscale. 2015;7:12351.

    Article  CAS  PubMed  Google Scholar 

  31. Mouthuy PA, Groszkowski L, Ye H. Performances of a portable electrospinning apparatus. Biotechnol Lett. 2015;37:1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao P, Zhang Y, Chen X, Xu C, Guo J, Deng M, Qu X, Huang P, Feng Z, Zhang J. Versatile hydrogel dressing with skin adaptiveness and mild photothermal antibacterial activity for methicillin-resistant staphylococcus aureus-infected dynamic wound healing. Adv Sci. 2023;10: 206585.

    Google Scholar 

  33. Li X, Lee S, Yoon J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev. 2018;47:1174.

    Article  CAS  PubMed  Google Scholar 

  34. Liu K, Xing R, Zou Q, Ma G, Möhwald H, Yan X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed. 2016;55:3036.

    Article  CAS  Google Scholar 

  35. Bian H, Ma D, Pan F, Zhang X, Xin K, Zhang X, Yang Y, Peng X, Xiao Y. Cardiolipin-targeted NIR-II fluorophore causes “avalanche effects” for re-engaging cancer apoptosis and inhibiting metastasis. J Am Chem Soc. 2022;144:22562.

    Article  CAS  PubMed  Google Scholar 

  36. Kielesiński Ł, Deperasińska I, Morawski O, Vygranenko KV, Ouellette ET, Gryko DT. Polarized, V-shaped, and conjoined biscoumarins: from lack of dipole moment alignment to high brightness. J Org Chem. 2022;87:5961.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang K, Zhang W, Huang J, Pang A, Wong MS. Metal-free photosensitizers based on benzodithienothiophene as π-conjugated spacer for dye-sensitized solar cells. Org Electronics. 2017;42:275.

    Article  CAS  Google Scholar 

  38. Chen M, Xie W, Li D, Zebibula A, Wang Y, Qian J, Qin A, Tang BZ. Utilizing a pyrazine-containing aggregation-induced emission luminogen as an efficient photosensitizer for imaging-guided two-photon photodynamic therapy. Chem Eur J. 2018;24:16603.

    Article  CAS  PubMed  Google Scholar 

  39. Chen F, Nakano K, Kaji Y, Adachi K, Hashizume D, Tajima K. Triphenyleno[1,2-c:7,8-c′]bis([1,2,5]thiadiazole) as a V-shaped electron-deficient unit to construct wide-bandgap amorphous polymers for efficient organic solar cells. ACS Appl Mater Interfaces. 2021;13:57743.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou L, Liu N, Feng L, Zhao M, Wu P, Chai Y, Liu J, Zhu P, Guo R. Multifunctional electrospun asymmetric wettable membrane containing black phosphorus/Rg1 for enhancing infected wound healing. Bioeng Transl Med. 2022;7: e10274.

    Article  CAS  PubMed  Google Scholar 

  41. He C, Yu B, Lv Y, Huang Y, Guo J, Li L, Chen M, Zheng Y, Liu M, Guo S, Shi X, Yang J. Biomimetic asymmetric composite dressing by electrospinning with aligned nanofibrous and micropatterned structures for severe burn wound healing. ACS Appl Mater Interfaces. 2022;14:32799.

    Article  CAS  Google Scholar 

  42. Dong R, Li Y, Chen M, Xiao P, Wu Y, Zhou K, Zhao Z, Tang BZ. In situ electrospinning of aggregation-induced emission nanofibrous dressing for wound healing. Small Methods. 2022;6:e2101247.

    Article  PubMed  Google Scholar 

  43. Yan D, Wu Q, Wang D, Tang BZ. Innovative synthetic procedures for luminogens showing aggregation-induced emission. Angew Chem Int Ed. 2021;60:15724.

    Article  CAS  Google Scholar 

  44. Fu X, Wang J, Qian D, Xi L, Chen L, Du Y, Cui W, Wang Y. Oxygen atom-concentrating short fibrous sponge regulates cellular respiration for wound healing. Adv Fiber Mater. 2023;5:1773.

    Article  CAS  Google Scholar 

  45. Yuan Z, Zhao Y, Shafiq M, Song J, Hou J, Liang Y, Yu X, Chen Y, Yu F, El-Newehy M, El-Hamshary H, Morsi Y, Jiang S, Zheng H, Mo X. Multi-functional fibrous dressings for burn injury treatment with pain and swelling relief and scarless wound healing. Adv Fiber Mater. 2023;5:1963.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (2232023D-03, CUSF-DH-D-2023007), National Key Research and Development Program of China (2021YFA1201304), Science and Technology Commission of Shanghai Municipality (20DZ2254900), State-Funded Postdoctoral Researcher Program (GZC20230419).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengkun Chen, Mei Wen or Nuo Yu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2193 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, L., Qiu, P., Niu, S. et al. On-Site Electrospinning Nanofiber Membranes Incorporating V-Shaped Organic Semiconductors for Multifunctional Diabetic Wound Dressing. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00421-9

Keywords

Navigation