Skip to main content

Advertisement

Log in

Ketoprofen–FA Co-crystal: In Vitro and In Vivo Investigation for the Solubility Enhancement of Drug by Design of Expert

  • Research Article
  • Theme: Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present piece of research work is framed for improving the solubility of ketoprofen by forming co-crystal using fumaric acid as a coformer. Co-crystal of ketoprofen and fumaric acid was prepared by simple solvent-assisted grinding method, containing drug and coformer as independent variables and solubility and % drug release were assumed to be dependent variables. Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance and scanning electron microscopy techniques were used to characterize the preparation of optimized batch of co-crystal and further, evaluated for in vitro and in vivo anti-inflammatory and analgesic activities. Based on results of solubility and dissolution rate studies the formulation showed magnified improvement in both the properties on co-crystallization. The values of Gibbs free energy are negative at all levels of carrier demonstrating spontaneity of the drug solubilization process. The IC50 value of optimized batch of co-crystal formulation and the pure drug was observed as 327.33 μg/ml and 556.11 μg/ml, respectively, demonstrating that co-crystal formulation possesses more percentage protection against protein denaturation than the drug ketoprofen. In vivo (anti-inflammatory and analgesic) activities revealed that optimized batch of co-crystal formulation delivered a rapid pharmacological response in Wistar rats and albino mice when compared with standard drug.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All the data are available in the manuscript.

References

  1. Rasenack N, Müller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9(1):1–3. https://doi.org/10.1081/PDT-120027417.

    Article  CAS  PubMed  Google Scholar 

  2. Jain NK, Gupta U. Application of dendrimer–drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin Drug Metab Toxicol. 2008;4(8):1035–52. https://doi.org/10.1517/17425255.4.8.1035.

    Article  CAS  PubMed  Google Scholar 

  3. Oprean C, Mioc M, Csányi E, Ambrus R, Bojin F, Tatu C, Cristea M, Ivan A, Danciu C, Dehelean C, Paunescu V. Improvement of ursolic and oleanolic acids’ antitumor activity by complexation with hydrophilic cyclodextrins. Biomed Pharmacother. 2016;83:1095–104. https://doi.org/10.1016/j.biopha.2016.08.030.

    Article  CAS  PubMed  Google Scholar 

  4. Medarević D, Kachrimanis K, Djurić Z, Ibrić S. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci. 2015;78:273–85. https://doi.org/10.1016/j.ejps.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  5. Bhatia M, Devi R. Enhanced Solubility and Drug Release of Ketoprofen Using Lyophilized Bovine Serum Albumin Solid Dispersion. Acta Pharm Sci. 2019;57(1):33. https://doi.org/10.23893/1307-2080.APS.05703.

    Article  CAS  Google Scholar 

  6. Bhatia M, Devi S. Development Characterisation and Evaluation of PVP K-30/PEG Solid Dispersion Containing Ketoprofen. Acta Pharm Sci. 2020;58(1):83. https://doi.org/10.23893/1307-2080.APS.05806.

    Article  CAS  Google Scholar 

  7. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30. https://doi.org/10.1023/B:PHAM.0000016235.32639.23.

    Article  CAS  PubMed  Google Scholar 

  8. Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev. 2020;159:344–63. https://doi.org/10.1016/j.addr.2020.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Zheng Z, Wang K, Tang C, Liu Y, Li J. Prebiotic carbohydrates: Effect on physicochemical stability and solubility of algal oil nanoparticles. Carbohydr Polym. 2020;228:115372. https://doi.org/10.1016/j.carbpol.2019.115372.

    Article  CAS  PubMed  Google Scholar 

  10. Dhiman P, Bhatia M. Microwave assisted quaternized cyclodextrin grafted chitosan (QCD-g-CH) nanoparticles entrapping ciprofloxacin. J Polym Res. 2021;28(5):1–14. https://doi.org/10.1007/s10965-021-02535-9.

    Article  CAS  Google Scholar 

  11. Dhiman P, Bhatia M. Ketoconazole loaded quaternized chitosan nanoparticles-PVA film: preparation and evaluation. Polym Bull. 2021;79:1–19. https://doi.org/10.1007/s00289-020-03500-0.

    Article  CAS  Google Scholar 

  12. Aloisio C, Bueno MS, Ponte MP, Paredes A, Palma SD, Longhi M. Development of solid self-emulsifying drug delivery systems (SEDDS) to improve the solubility of resveratrol. Ther Deliv. 2019;10(10):626–41. https://doi.org/10.4155/tde-2019-0054.

    Article  CAS  PubMed  Google Scholar 

  13. Czajkowska-Kośnik A, Szekalska M, Amelian A, Szymańska E, Winnicka K. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules. 2015;20(12):21010–22. https://doi.org/10.3390/molecules201219745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kadu PJ, Kushare SS, Thacker DD, Gattani SG. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm Dev Technol. 2011;16(1):65–74. https://doi.org/10.3109/10837450903499333.

    Article  CAS  PubMed  Google Scholar 

  15. Gwak HS, Choi JS, Choi HK. Enhanced bioavailability of piroxicam via salt formation with ethanolamines. Int J Pharm. 2005;297(1–2):156–61. https://doi.org/10.1016/j.ijpharm.2005.03.016.

    Article  CAS  PubMed  Google Scholar 

  16. Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, Wu X, Schiffelers RM. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes Int. J Pharm. 2011;416(2):433–42. https://doi.org/10.1016/j.ijpharm.2011.01.056.

    Article  CAS  Google Scholar 

  17. Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, Tang X. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–85. https://doi.org/10.1016/j.ijpharm.2010.05.005.

    Article  CAS  PubMed  Google Scholar 

  18. Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetin-nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B. 2014;113:15–24. https://doi.org/10.1016/j.colsurfb.2013.08.032.

    Article  CAS  Google Scholar 

  19. Jornada DH, dos Santos Fernandes GF, Chiba DE, De Melo TRF, Dos Santos JL, Chung MC. The prodrug approach: a successful tool for improving drug solubility. Molecules. 2016;21(1):42. https://doi.org/10.3390/molecules21010042.

    Article  CAS  Google Scholar 

  20. Bahr MN, Angamuthu M, Leonhardt S, Campbell G, Neau SH. Rapid screening approaches for solubility enhancement, precipitation inhibition and dissociation of a cocrystal drug substance using high throughput experimentation. J Drug Deliv Sci Technol. 2021;61:102196. https://doi.org/10.1016/j.jddst.2020.102196.

    Article  CAS  Google Scholar 

  21. Bhatia M, Kumar A, Verma V, Devi S. Development of ketoprofen-p-aminobenzoic acid co-crystal: formulation, characterization, optimization, and evaluation. Med Chem Res. 2021;30(11):2090–102. https://doi.org/10.1007/s00044-021-02794-7.

    Article  CAS  Google Scholar 

  22. Pantwalawalkar J, More H, Bhange D, Patil U, Jadhav N. Novel curcumin ascorbic acid cocrystal for improved solubility. J Drug Deliv Sci Technol. 2021;61:102233. https://doi.org/10.1016/j.jddst.2020.102233.

    Article  CAS  Google Scholar 

  23. Cavanagh KL, Kuminek G, Rodríguez-Hornedo N. Cocrystal Solubility Advantage and Dose/Solubility Ratio Diagrams: A Mechanistic Approach To Selecting Additives and Controlling Dissolution–Supersaturation–Precipitation Behavior. Mol Pharm. 2020;17(11):4286–301. https://doi.org/10.1021/acs.molpharmaceut.0c00713.

    Article  CAS  PubMed  Google Scholar 

  24. Kimoto K, Yamamoto M, Karashima M, Hohokabe M, Takeda J, Yamamoto K, Ikeda Y. Pharmaceutical cocrystal development of TAK-020 with enhanced oral absorption. Curr Comput-Aided Drug Des. 2020;10(3):211. https://doi.org/10.3390/cryst10030211.

    Article  CAS  Google Scholar 

  25. Guo C, Zhang Q, Zhu B, Zhang Z, Bao J, Ding Q, Mei X. Pharmaceutical Cocrystals of Nicorandil with Enhanced Chemical Stability and Sustained Release. Cryst Growth Des. 2020;20(10):6995–7005. https://doi.org/10.1021/acs.cgd.0c01043.

    Article  CAS  Google Scholar 

  26. Sarraguça MC, Ribeiro PR, Dos Santos AO, Lopes JA. Batch statistical process monitoring approach to a cocrystallization process. J pharm sci. 2015;104(12):4099–108. https://doi.org/10.1002/jps.24623.

    Article  CAS  PubMed  Google Scholar 

  27. Soares FL, Carneiro RL. Green synthesis of ibuprofen–nicotinamide cocrystals and in-line evaluation by Raman spectroscopy. Cryst Growth Des. 2013;13(4):1510–7. https://doi.org/10.1021/cg3017112.

    Article  CAS  Google Scholar 

  28. Maheshwari C, André V, Reddy S, Roy L, Duarte T, Rodríguez-Hornedo N. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pH max and solute–solvent interactions. Cryst Eng Comm. 2012;14(14):4801–11. https://doi.org/10.1039/C2CE06615G.

    Article  CAS  Google Scholar 

  29. Sathisaran I, Dalvi SV. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10(3):108. https://doi.org/10.3390/pharmaceutics10030108.

    Article  CAS  PubMed Central  Google Scholar 

  30. Amin MA, Osman SK, Aly UF. Preparation and characterization of ketoprofen nanosuspension for solubility and dissolution velocity enhancement. Int J Pharma Bio Sci. 2013;4:768–80.

    CAS  Google Scholar 

  31. Yadav PS, Kumar V, Singh UP, Bhat HR, Mazumder B. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol. SAUDI PHARM J. 2013;21(1):77–84. https://doi.org/10.1016/j.jsps.2011.12.007.

    Article  PubMed  Google Scholar 

  32. Nikumbh KV, Sevankar SG, Patil MP. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv. 2015;22(4):509–15. https://doi.org/10.3109/10717544.2013.859186.

    Article  CAS  PubMed  Google Scholar 

  33. Ambala R, Vemula SK. Formulation and characterization of ketoprofen emulgels. J Applied Pharma Sci. 2015;5(7):112–7. https://doi.org/10.7324/JAPS.2015.50717.

    Article  CAS  Google Scholar 

  34. Attia MF, Anton N, Khan IU, Serra CA, Messaddeq N, Jakhmola A, Vecchione R, Vandamme T. One-step synthesis of iron oxide polypyrrole nanoparticles encapsulating ketoprofen as model of hydrophobic drug. Int J Pharm. 2016;508(1–2):61–70. https://doi.org/10.1016/j.ijpharm.2016.04.073.

    Article  CAS  PubMed  Google Scholar 

  35. Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J control Release. 2012;158(2):336–45. https://doi.org/10.1016/j.jconrel.2011.11.016.

    Article  CAS  PubMed  Google Scholar 

  36. Gul R, Ahmed N, Ullah N, Khan MI, Elaissari A. Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles. AAPS Pharm Sci Tech. 2018;19(4):1869–81. https://doi.org/10.1208/s12249-018-0997-0.

    Article  CAS  Google Scholar 

  37. Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. NANOMED- NANOTECHNOL Bio Med. 2010;6(6):753–9. https://doi.org/10.1016/j.nano.2010.06.003.

    Article  CAS  Google Scholar 

  38. Cirri M, Bragagni M, Mennini N, Mura P. Development of a new delivery system consisting in “drug–in cyclodextrin–in nanostructured lipid carriers” for ketoprofen topical delivery. Eur J Pharm Biopharm. 2012;80(1):46–53. https://doi.org/10.1016/j.ejpb.2011.07.015.

    Article  CAS  PubMed  Google Scholar 

  39. Xi MM, Wang XY, Fang KQ, Gu Y. Study on the characteristics of pectin–ketoprofen for colon targeting in rats. Int J Pharm. 2005;298(1):91–7. https://doi.org/10.1016/j.ijpharm.2005.04.012.

    Article  CAS  PubMed  Google Scholar 

  40. Kluge J, Fusaro F, Casas N, Mazzotti M, Muhrer G. Production of PLGA micro-and nanocomposites by supercritical fluid extraction of emulsions: I. Encapsulation of lysozyme J Supercrit fluids. 2009;50(3):327–35. https://doi.org/10.1016/j.supflu.2009.05.002.

    Article  CAS  Google Scholar 

  41. Vittal GV, Deveswaran R, Bharath S, Basavaraj BV, Madhavan V. Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design. Int J Pharm investig. 2012;2(3):150. https://doi.org/10.4103/2230-973X.104398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perpétuo GL, Chierice GO, Ferreira LT, Fraga-Silva TF, Venturini J, Arruda MS, Bannach G, Castro RA. A combined approach using differential scanning calorimetry with polarized light thermomicroscopy in the investigation of ketoprofen and nicotinamide cocrystal. Thermochim Acta. 2017;651:1. https://doi.org/10.1016/j.tca.2017.02.014.

    Article  CAS  Google Scholar 

  43. Evora AO, Bernardes CE, Piedade MFM, Conceição AC, Minas da Piedade ME. Energetics of glycine cocrystal or salt formation with two regioisomers: fumaric acid and maleic acid. Cryst Growth Des. 2019;19(9):5054–64. https://doi.org/10.1021/acs.cgd.9b00379.

    Article  CAS  Google Scholar 

  44. Fernandes RP, do Nascimento ALCS, Carvalho ACS, Teixeira JA, Ionashiro M, Caires FJ. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. J Therm Anal Calorim. 2019;138(1):765–77. https://doi.org/10.1007/s10973-019-08118-7.

    Article  CAS  Google Scholar 

  45. Gonnade RG, Iwama S, Mori Y, Takahashi H, Tsue H, Tamura R. Observation of efficient preferential enrichment phenomenon for a cocrystal of (DL)-phenylalanine and fumaric acid under nonequilibrium crystallization conditions. Cryst Growth Des. 2011;11(2):607–15. https://doi.org/10.1021/cg1015274.

    Article  CAS  Google Scholar 

  46. Du Y, Fang HX, Zhang Q, Zhang HL, Hong Z. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques. Spectrochim Acta Part A Mol Biomol Spectrosc. 2016;153:580–5. https://doi.org/10.1016/j.saa.2015.09.020.

    Article  CAS  Google Scholar 

  47. Du Y, Cai Q, Xue J, Zhang Q, Qin D. Structural investigation of the cocrystal formed between 5-fluorocytosine and fumaric acid based on vibrational spectroscopic technique. Spectrochim Acta A: Mol Biomol Spectrosc. 2017;178:251–7. https://doi.org/10.1016/j.saa.2017.02.004.

    Article  CAS  Google Scholar 

  48. Manoj K, Takahashi H, Iwama S, Gonnade RG, Tsue H, Tamura R. Crystal structure analysis of highly efficient chiral resolution of (RS)-arginine-fumaric acid cocrystal under preferential enrichment conditions. J Mol Struct. 2021;1245:131073. https://doi.org/10.1016/j.molstruc.2021.131073.

    Article  CAS  Google Scholar 

  49. Yang D, Cao J, Jiao L, Yang S, Zhang L, Lu Y, Du G. Solubility and stability advantages of a new cocrystal of berberine chloride with fumaric acid. ACS Omega. 2020;5(14):8283–92. https://doi.org/10.1021/acsomega.0c00692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kacso I, Rus LM, Martin F, Miclaus M, Filip X, Dan M. Solid-state compatibility studies of Ketoconazole-Fumaric acid co-crystal with tablet excipients. J Therm Anal Calorim. 2021;143(5):3499–506. https://doi.org/10.1007/s10973-020-09340-4.

    Article  CAS  Google Scholar 

  51. Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di-and tricarboxylic acids with 4, 4’-bipyridines and isonicotinamide. From binary to ternary cocrystals. Cryst Eng Comm. 2005;7:551–62. https://doi.org/10.1039/B509162D.

    Article  CAS  Google Scholar 

  52. Sarkar A, Rohani S. Cocrystals of acyclovir with promising physicochemical properties. J Pharm Sci. 2015;104(1):98–105. https://doi.org/10.1002/jps.24248.

    Article  CAS  PubMed  Google Scholar 

  53. Gautam MK, Besan M, Pandit D, Mandal S, Chadha R. Cocrystal of 5-fluorouracil: Characterization and evaluation of biopharmaceutical parameters. AAPS Pharm Sci Tech. 2019;20(4):1–7. https://doi.org/10.1208/s12249-019-1360-9.

    Article  CAS  Google Scholar 

  54. Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery. J Incl phenom Macrocycl Chem. 2010;67(3–4):253–60. https://doi.org/10.1007/s10847-009-9705-8.

    Article  CAS  Google Scholar 

  55. Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, Zhang Y, Ma A, Li L, Zhou Z. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol. 2019;50:248–54. https://doi.org/10.1016/j.jddst.2019.02.004.

    Article  CAS  Google Scholar 

  56. Chavan RR, Hosamani KM. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R Soc Open Sci. 2018;5(5): 172435. https://doi.org/10.1098/rsos.172435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhatia M, Rohilla S. Formulation and optimization of quinoa starch nanoparticles: Quality by design approach for solubility enhancement of piroxicam. Saudi Pharma J. 2020;28(8):927–35. https://doi.org/10.1016/j.jsps.2020.06.013.

    Article  CAS  Google Scholar 

  58. Shandil A, Yadav M, Sharma N, Nagpal K, Jindal DK, Deep A, Kumar S. Targeting keratinocyte hyperproliferation, inflammation, oxidative species and microbial infection by biological macromolecule-based chitosan nanoparticle-mediated gallic acid–rutin combination for the treatment of psoriasis. Polym Bull. 2020;77(9):4713–38. https://doi.org/10.1007/s00289-019-02984-9.

    Article  CAS  Google Scholar 

  59. Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. SAUDI PHARMA J. 2012;20(1):63–7. https://doi.org/10.1016/j.jsps.2011.08.001.

    Article  Google Scholar 

  60. Kulkarni SK. Heat and other physiological stress-induced analgesia: catecholamine mediated and naloxone reversible response. Life Sci. 1980;27(3):185–8. https://doi.org/10.1016/0024-3205(80)90136-8.

    Article  CAS  PubMed  Google Scholar 

  61. Olbert M, Gdula-Argasińska J, Nowak G, Librowski T. Beneficial effect of nanoparticles over standard form of zinc oxide in enhancing the anti-inflammatory activity of ketoprofen in rats. Pharmacol Rep. 2017;69(4):679–82.

    Article  CAS  Google Scholar 

  62. Sun S, Zhang X, Cui J, Liang S. Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale. 2020;12(32):16657–77. https://doi.org/10.1039/D0NR03637D.

    Article  CAS  PubMed  Google Scholar 

  63. Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci. 2009;71(4):359. https://doi.org/10.4103/0250-474X.57283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Etter MC. Encoding and decoding hydrogen-bond patters of organic compounds. Acc Chem Res. 1990;23:120–6.

    Article  CAS  Google Scholar 

  65. MOPAC2016, Version: 20.225W, James J. P. Stewart, Stewart Computational Chemistry, web: http://OpenMOPAC.net. Days left: 237

  66. Alex A. Granovsky, Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html

  67. Lu T, Chen F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J Mol Graph Model. 2012;38:314–23. https://doi.org/10.1016/j.jmgm.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  68. Tian Lu, Chen F. J Comput Chem. 2012;33:580–92.

    Article  Google Scholar 

  69. Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics. J Molec Graphics. 1996;14(1):33–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sunita Devi contributed to conceptualization and writing—original draft preparation; Meenakshi Bhatia contributed to conceptualization and supervision; Ashwini Kumar contributed to review & editing and software; Vikas Verma contributed to writing—review & editing; Snehlata Yadav contributed to review & editing and data curation.

Corresponding authors

Correspondence to Sunita Devi or Meenakshi Bhatia.

Ethics declarations

Ethical Approval and Consent to Participate

This investigation is approved by IAEC, Guru Jambheshwar University of Science and Technology, Hisar, India, under CPCSEA reg. no-IAEC/2021/10–19.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Theme: Advancements in Modified-release Oral Drug Delivery - Delivery throughout the Gastro-intestinal Tract

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Kumar, A., Kapoor, A. et al. Ketoprofen–FA Co-crystal: In Vitro and In Vivo Investigation for the Solubility Enhancement of Drug by Design of Expert. AAPS PharmSciTech 23, 101 (2022). https://doi.org/10.1208/s12249-022-02253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02253-5

KEY WORDS

Navigation