Carlo Reis EC, Borges APB, Araújo MVF, Mendes VC, Guan L, Davies JE. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials. 2011;32:9244–53. https://doi.org/10.1016/j.biomaterials.2011.08.040.
CAS
Article
PubMed
Google Scholar
Xu C, Lei C, Meng L, Wang C, Song Y. Chitosan as a barrier membrane material in periodontal tissue regeneration. J Biomed Mater Res - Part B Appl Biomater. 2012;100B:1435–43. https://doi.org/10.1002/jbm.b.32662.
CAS
Article
Google Scholar
Schwartzmann M. Use of collagen membranes for guided bone regeneration: a review. Implant Dent. 2000;9:63–6. https://doi.org/10.1097/00008505-200009010-00011.
CAS
Article
PubMed
Google Scholar
Stavropoulos A, Karring T. Guided tissue regeneration combined with a deproteinized bovine bone mineral (Bio-Oss ®) in the treatment of intrabony periodontal defects: 6-year results from a randomized-controlled clinical trial. J Clin Periodontol. 2010;37:200–10. https://doi.org/10.1111/j.1600-051X.2009.01520.x.
Article
PubMed
Google Scholar
Bashutski JD, Wang HL. Periodontal and endodontic regeneration. J Endod. 2009;35:321–8. https://doi.org/10.1016/j.joen.2008.11.023.
Article
PubMed
Google Scholar
Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu T-MG, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater. 2012;28:703–21.
CAS
Article
Google Scholar
Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ, et al. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med. 2013;9:E116–23. https://doi.org/10.1002/term.1712.
CAS
Article
PubMed
Google Scholar
Marco B, Eliseu M, Maria TA, Divya P. Tetracycline-incorporated nanofibrous coating on titanium to prevent early implant infection and enhance cell response. Front Bioeng Biotechnol. 2016;4. https://doi.org/10.3389/conf.FBIOE.2016.01.00761.
Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur RI. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent Mater. 2017;33:71–83. https://doi.org/10.1016/j.dental.2016.10.003.
CAS
Article
PubMed
Google Scholar
Qasim SB, Delaine-Smith RM, Rawlinson A, Ur RI. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomater. 2015;23:317–28. https://doi.org/10.1016/j.actbio.2015.05.001.
CAS
Article
PubMed
Google Scholar
Azevedo AS, Sá MJC, Fook MVL, Neto PIN, Sousa OB, Azevedo SS, et al. Use of chitosan and β-tricalcium phosphate, alone and in combination, for bone healing in rabbits. J Mater Sci Mater Med. 2014;25:481–6. https://doi.org/10.1007/s10856-013-5091-2.
CAS
Article
PubMed
Google Scholar
Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62:378–86. https://doi.org/10.1002/jbm.10312.
CAS
Article
PubMed
Google Scholar
Sadaf N, Anoop B, Dakshina B, Shweta B. Evaluation of efficacy of tetracycline fibers in conjunction with scaling and root planing in patients with chronic periodontitis. J Indian Soc Periodontol. 2012;16:392–7. https://doi.org/10.4103/0972-124X.100918.
Article
PubMed
PubMed Central
Google Scholar
Nadig PS, Shah MA. Tetracycline as local drug delivery in treatment of chronic periodontitis: a systematic review and meta-analysis. J Indian Soc Periodontol. 2016;20:576–83. https://doi.org/10.4103/jisp.jisp_97_17.
Article
PubMed
PubMed Central
Google Scholar
Teng SH, Lee EJ, Wang P, Jun SH, Han CM, Kim HE. Functionally gradient chitosan/hydroxyapatite composite scaffolds for controlled drug release. J Biomed Mater Res - Part B Appl Biomater. 2009;90(B):275–82. https://doi.org/10.1002/jbm.b.31283.
CAS
Article
PubMed
Google Scholar
Jin RM, Sultana N, Baba S, Hamdan S, Ismail AF. Porous PCL/chitosan and nHA/PCL/chitosan scaffolds for tissue engineering applications: fabrication and evaluation. J Nanomater. 2015;2015:1–8. https://doi.org/10.1155/2015/357372.
CAS
Article
Google Scholar
Monteiro OA, Airoldi C. Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. Int J Biol Macromol. 1999;26:119–28. https://doi.org/10.1016/S0141-8130(99)00068-9.
CAS
Article
PubMed
Google Scholar
Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B. 2012;2:439–49. https://doi.org/10.1016/j.apsb.2012.07.004.
CAS
Article
Google Scholar
Chen M-C, Mi F-L, Liao Z-X, Sung H-W. Chitosan: its applications in drug-eluting devices. In: Jayakumar R, Prabaharan M, Muzzarelli RAA, editors. Chitosan Biomater. I, vol. 243, Springer Berlin Heidelberg; 2011, p. 185–230. https://doi.org/10.1007/12_2011_116.
Islam N, Dmour I, Taha MO. Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon. 2019;5:e01684. https://doi.org/10.1016/j.heliyon.2019.e01684.
Article
PubMed
PubMed Central
Google Scholar
Mi F-LL, Kuan C-YY, Shyu S-SS, Lee S-TT, Chang S-FF. Study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release. Carbohydr Polym. 2000;41:389–96. https://doi.org/10.1016/S0144-8617(99)00104-6.
CAS
Article
Google Scholar
Jia LN, Zhang X, Xu HY, Hua F, Hu XG, Xie Q, et al. Development of a doxycycline hydrochloride-loaded electrospun nanofibrous membrane for GTR/GBR applications. J Nanomater. 2016;2016:1–10. https://doi.org/10.1155/2016/6507459.
CAS
Article
Google Scholar
Findlay JWA, Dillard RF. Appropriate calibration curve fitting in ligand binding assays. AAPS J. 2007;9:E260–7. https://doi.org/10.1208/aapsj0902029.
Article
PubMed
PubMed Central
Google Scholar
Chandrasekaran AR, Jia CY, Theng CS, Muniandy T, Muralidharan S, Dhanaraj SA. In vitro studies and evaluation of metformin marketed tablets-Malaysia. J Appl Pharm Sci. 2011;1:214–7.
Google Scholar
Maganti N, Venkat Surya PKC, Thein-Han WW, Pesacreta TC, Misra RDK. Structure-process-property relationship of biomimetic chitosan-based nanocomposite scaffolds for tissue engineering: biological, physico-chemical, and mechanical functions. Adv Eng Mater. 2011;13:B108–22. https://doi.org/10.1002/adem.201080094.
CAS
Article
Google Scholar
Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C. 2009;29:29–35. https://doi.org/10.1016/j.msec.2008.05.008.
CAS
Article
Google Scholar
Thein-Han WW, Misra RDK. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5:1182–97. https://doi.org/10.1016/j.actbio.2008.11.025.
CAS
Article
PubMed
Google Scholar
Kumar TM. Spectroscopic characterization of chloramphenicol and tetracycline: an impact of biofield treatment. Pharm Anal Acta. 2015;6:1–5. https://doi.org/10.4172/2153-2435.1000395.
CAS
Article
Google Scholar
Junejo Y, Safdar M. Highly effective heterogeneous doxycycline stabilized silver nanocatalyst for the degradation of ibuprofen and paracetamol drugs. Arab J Chem. 2019;12:2823–32. https://doi.org/10.1016/j.arabjc.2015.06.014.
CAS
Article
Google Scholar
Bottino MC, Thomas V, Janowski GM. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011;7:216–24. https://doi.org/10.1016/j.actbio.2010.08.019.
CAS
Article
PubMed
Google Scholar
Bin QSS, Zafar MS, Niazi FH, Alshahwan M, HA KS, Daood U. Functionally graded biomimetic biomaterials in dentistry: an evidence-based update. J Biomater Sci Polym Ed. 2020:1–20. https://doi.org/10.1080/09205063.2020.1744289.
Bottino MC, Arthur RA, Waeiss RA, Kamocki K, Gregson KS, Gregory RL. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Investig. 2014;18:2151–8. https://doi.org/10.1007/s00784-014-1201-x.
Article
PubMed
PubMed Central
Google Scholar
Cai SJ, Li CW, Weihs D, Wang GJ. Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci Technol Adv Mater. 2017;18:987–96. https://doi.org/10.1080/14686996.2017.1406287.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikeda T, Ikeda K, Yamamoto K, Ishizaki H, Yoshizawa Y, Yanagiguchi K, et al. Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res Int. 2014;2014:1–8. https://doi.org/10.1155/2014/786892.
Article
Google Scholar
Dinu MV, Přádný M, Drǎgan ES, Michálek J. Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydr Polym. 2013;94:170–8. https://doi.org/10.1016/j.carbpol.2013.01.084.
CAS
Article
PubMed
Google Scholar
Jana S, Florczyk SJ, Leung M, Zhang M. High-strength pristine porous chitosan scaffolds for tissue engineering. J Mater Chem. 2012;22:6291–9. https://doi.org/10.1039/c2jm16676c.
CAS
Article
Google Scholar
Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–42.
CAS
Article
Google Scholar
Ahmed S, Sheraz M, Rehman I. Studies on tolfenamic acid–chitosan intermolecular interactions: effect of pH, polymer concentration and molecular weight. AAPS PharmSciTech. 2013;14:870–9. https://doi.org/10.1208/s12249-013-9974-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Barbosa MA, Pêgo AP, Amaral IF. 2.213 - Chitosan. In: Editor-in-Chief: Paul D, editor. Compr. Biomater., Oxford: Elsevier; 2011, p. 221–37. https://doi.org/10.1016/B978-0-08-055294-1.00072-6.
Yuan NY, Lin YA, Ho MH, Wang DM, Lai JY, Hsieh HJ. Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydr Polym. 2009;78:349–56. https://doi.org/10.1016/j.carbpol.2009.04.021.
CAS
Article
Google Scholar
Azab AK, Orkin B, Doviner V, Nissan A, Klein M, Srebnik M, et al. Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis. J Control Release. 2006;111:281–9. https://doi.org/10.1016/j.jconrel.2005.12.014.
CAS
Article
PubMed
Google Scholar
Phaechamud T, Charoenteeraboon J. Antibacterial activity and drug release of chitosan sponge containing doxycycline hyclate. AAPS PharmSciTech. 2008;9:829–35. https://doi.org/10.1208/s12249-008-9117-x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Neto CGT, Dantas TNC, Fonseca JLC, Pereira MR. Permeability studies in chitosan membranes. Effects of crosslinking and poly(ethylene oxide) addition. Carbohydr Res. 2005;340:2630–6. https://doi.org/10.1016/j.carres.2005.09.011.
CAS
Article
PubMed
Google Scholar
Hoffmann B, Seitz D, Mencke A, Kokott A, Ziegler G. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2009;20:1495–503. https://doi.org/10.1007/s10856-009-3707-3.
CAS
Article
PubMed
Google Scholar
Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv J Deliv Target Ther Agents. 2005;12:41–57. https://doi.org/10.1080/10717540590889781.
CAS
Article
Google Scholar
Poon L, Wilson LD, Headley JV. Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydr Polym. 2014;109:92–101. https://doi.org/10.1016/j.carbpol.2014.02.086.
CAS
Article
PubMed
Google Scholar
Szekalska M, Sosnowska K, Zakrzeska A, Kasacka I, Lewandowska A, Winnicka K. The influence of chitosan cross-linking on the properties of alginate microparticles with metformin hydrochloride - in vitro and in vivo evaluation. Molecules. 2017;22. https://doi.org/10.3390/molecules22010182.
Roberts G, Taylor K. Chitosan gels. III: the formation of gels by reaction of chitosan with glutaraldehyde. Die Makromol Chemie. 1989;190:951–60. https://doi.org/10.1002/macp.1989.021900504.
CAS
Article
Google Scholar
Hamed R, AbuRezeq A, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev Ind Pharm. 2018;44:1488–97. https://doi.org/10.1080/03639045.2018.1464021.
CAS
Article
PubMed
Google Scholar
Mirzaei BE, Ramazani A, Shafiee M, Danaei M. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater. 2013;62:605–11. https://doi.org/10.1080/00914037.2013.769165.
CAS
Article
Google Scholar
Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, et al. Application of chitosan in bone and dental engineering. Molecules. 2019;24:3009. https://doi.org/10.3390/molecules24163009.
CAS
Article
PubMed Central
Google Scholar