Skip to main content
Log in

Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitosan crosslinked with glutaraldehyde or oxidised dextran was studied as a potential scaffold material in tissue engineering for cartilage regeneration. By mixing two solutions of both components it became a gel, which was frozen. After lyophilisation a scaffold was generated with interconnected pores with diameters ranging between 120–350 μm. The mechanical properties (yielding point, elastic and viscous moduli), absolute porosity, pore morphology were determined depending on the ratio of chitosan to crosslinker. ATDC5 (murine cell line) and bovine articular chondrocytes (primary cells) were cultured for 14 days on the scaffolds. Cultivation with ATDC5 cells and bovine chondrocytes showed no negative influence of glutaraldehyde on cell vitality and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khor E. Chitin: Fulfilling a biomaterials promise. 1st ed. Amsterdam: Elsevier; 2001.

    Google Scholar 

  2. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  PubMed  CAS  Google Scholar 

  3. Hsieh CY, Tsai SP, Ho MH, Wang DM, Liu CE, Hsieh CH, et al. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydr Polym. 2007;67(1):124–32.

    Article  CAS  Google Scholar 

  4. Peniche C, Fernadez M, Rodriguez G, Parra J, Jimenez J, Lopez Bravo A, et al. Cell supports of chitosan/hyaluronic acid and chondroitin sulphate systems Morphology and biological behaviour. J Mater Sci Mater Med. 2007;18(9):1719–26.

    Article  PubMed  CAS  Google Scholar 

  5. Gupta KC, Jabrail FH. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr Res. 2007;342(15):2244–52.

    Article  PubMed  CAS  Google Scholar 

  6. Adekogbe I, Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials. 2005;26(35):7241–50.

    Article  PubMed  CAS  Google Scholar 

  7. Ngah WSW, Endud CS, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym. 2002;50(2):181–90.

    Article  CAS  Google Scholar 

  8. Baran ET, Mano JF, Reis RL. Starch-chitosan hydrogels prepared by reductive alkylation cross-linking. J Mater Sci Mater Med. 2004;15(7):759–65.

    Article  PubMed  CAS  Google Scholar 

  9. Paradossi G, Cavalieri F, Crescenzi V. H-1 NMR relaxation study of a chitosan-cyclodextrin network. Carbohydr Res. 1997;300(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  10. Shu XZ, Zhu KJ. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm. 2002;233(1–2):217–25.

    Article  PubMed  CAS  Google Scholar 

  11. Montembault A, Tahiri K, Korwin-Zmijowska C, Chevalier X, Corvol MT, Domard A. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie. 2006;88(5):551–64.

    Article  PubMed  CAS  Google Scholar 

  12. Mao JS, Zhao LG, Yin YJ, Yao KD. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials. 2003;24(6):1067–74.

    Article  PubMed  CAS  Google Scholar 

  13. Zhu AP, Zhang M, Wu J, Shen J. Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials. 2002;23(23):4657–65.

    Article  PubMed  CAS  Google Scholar 

  14. Vieira RS, Beppu MM. Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids Surf A Physicochem Eng Asp. 2006;279(1–3):196–207.

    Article  CAS  Google Scholar 

  15. Lin-Gibson S, Walls HJ, Kennedy SB, Welsh ER. Reaction kinetics and gel properties of blocked diisocyinate crosslinked chitosan hydrogels. Carbohydr Polym. 2003;54(2):193–9.

    Article  CAS  Google Scholar 

  16. Liu YL, Su YH, Lai JY. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using gamma-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer. 2004;45(20):6831–7.

    Article  CAS  Google Scholar 

  17. Mi FL, Tan YC, Liang HF, Sung HW. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials. 2002;23(1):181–91.

    Article  PubMed  CAS  Google Scholar 

  18. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–75.

    Article  PubMed  CAS  Google Scholar 

  19. Silva SS, Santos MI, Coutinho OP, Mano JF, Reis RL. Physical properties and biocompatibility of chitosan/soy blended membranes. J Mater Sci Mater Med. 2005;16(6):575–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hoffmann B, Volkmer E, Kokott A, Weber M, Hamisch S, Schieker M, et al. A new biodegradable bone wax substitute with the potential to be used as a bone filling material. J Mater Chem. 2007;17(38):4028–33.

    Article  CAS  Google Scholar 

  21. Chow KS, Khor E. Novel fabrication of open-pore chitin matrixes. Biomacromolecules. 2000;1(1):61–7. Spring.

    Article  PubMed  CAS  Google Scholar 

  22. Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20(12):1133–42.

    Article  PubMed  CAS  Google Scholar 

  23. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  PubMed  CAS  Google Scholar 

  24. Mao JS, Liu HF, Yin YJ, Yao KD. The properties of chitosan-gelatin membranes and scaffolds modified with hyaluronic acid by different methods. Biomaterials. 2003;24(9):1621–9.

    Article  PubMed  CAS  Google Scholar 

  25. Chen DC, Lai YL, Lee SY, Hung SL, Chen HL. Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking. J Biomed Mater Res A. 2007;80A(2):399–409.

    Article  CAS  Google Scholar 

  26. Aliakbar Moshfeghian JT, Sundararajan V, Madihally. Characterization of emulsified chitosan-PLGA matrices formed using controlled-rate freezing and lyophilization technique. J Biomed Mater Res A. 2006;79(2):418–30.

    PubMed  Google Scholar 

  27. Martinek V. Anatomy and pathophysiology of articular cartilage. Dtsch Z Sportmed. 2003;54(6):166–70.

    Google Scholar 

  28. Draget KI. Associating phenomena in highly acetylated chitosan gels. Polym Gel Netw. 1996;4(2):143–51.

    Article  CAS  Google Scholar 

  29. Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145–54.

    Article  PubMed  CAS  Google Scholar 

  30. Huang-Lee LL, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res. 1990;24(9):1185–201.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Friedrich-Baur-Stiftung”, Altenkunstadt, Germany. We would like to express our thanks to Dipl.-Ing. Sabine Hamisch for her advice and guidance with the rheological measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, B., Seitz, D., Mencke, A. et al. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. J Mater Sci: Mater Med 20, 1495–1503 (2009). https://doi.org/10.1007/s10856-009-3707-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3707-3

Keywords

Navigation