Skip to main content

Advertisement

Log in

Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The purposes of this study were to fabricate biodegradable polydioxanone (PDS II®) electrospun periodontal drug delivery systems (hereafter referred to as matrices) containing either metronidazole (MET) or ciprofloxacin (CIP) and to investigate the effects of antibiotic incorporation on both periodontopathogens and commensal oral bacteria.

Materials and methods

Fibrous matrices were processed from PDS polymer solution by electrospinning. Antibiotic-containing PDS solutions were prepared to obtain four distinct groups: 5 wt.% MET, 25 wt.% MET, 5 wt.% CIP, and 25 wt.% CIP. Pure PDS was used as a control. High-performance liquid chromatography (HPLC) was done to evaluate MET and CIP release. Dual-species biofilms formed by Lactobacillus casei (Lc) and Streptococcus salivarius (Ss) were grown on the surface of all electrospun matrices. After 4 days of biofilm growth, the viability of bacteria on biofilms was assessed. Additionally, antimicrobial properties were evaluated against periodontopathogens Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa) using agar diffusion assay.

Results

A three-dimensional interconnected porous network was observed in the different fabricated matrices. Pure PDS showed the highest fiber diameter mean (1,158 ± 402 nm) followed in a descending order by groups 5 wt.% MET (1,108 ± 383 nm), 25 wt.% MET (944 ± 392 nm), 5 wt.% CIP (871 ± 309 nm), and 25 wt.% CIP (765 ± 288 nm). HPLC demonstrated that groups containing higher amounts (25 wt.%) of incorporated drugs released more over time, while those with lower levels (5 wt.%) the least. No inhibitory effect of the tested antibiotics was detected on biofilm formation by the tested commensal oral bacteria. Meanwhile, CIP-containing matrices inhibited growth of Fn and Aa.

Conclusion

CIP-containing matrices led to a significant inhibition of periodontopathogens without negatively impairing the growth of periodontal beneficial bacteria.

Clinical relevance

Based on the proven in vitro inhibition of periodontitis-related bacteria, future in vivo research using relevant animal models is needed to confirm the effectiveness of these drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walker CB, Karpinia K (2002) Rationale for use of antibiotics in periodontics. J Periodontol 73:1188–1196

    Article  PubMed  Google Scholar 

  2. Xajigeorgiou C, Sakellari D, Slini T, Baka A, Konstantinidis A (2006) Clinical and microbiological effects of different antimicrobials on generalized aggressive periodontitis. J Clin Periodontol 33:254–264

    Article  PubMed  Google Scholar 

  3. Serrano C, Torres N, Valdivieso C, Castano C, Barrera M, Cabrales A (2009) Antibiotic resistance of periodontal pathogens obtained from frequent antibiotics users. Acta Odontol Latinoam 22:99–104

    PubMed  Google Scholar 

  4. Ardila CM, Granada MI, Guzman IC (2010) Antibiotic resistance of subgingival species in chronic periodontitis patients. J Periodontol Res 45:557–563

    Google Scholar 

  5. Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  PubMed  Google Scholar 

  6. Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114

    Article  PubMed  Google Scholar 

  7. Koll-Klais P, Mandar R, Leibur E, Marcotte H, Hammarstrom L, Mikelsaar M (2005) Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol 20:354–361

    Article  PubMed  Google Scholar 

  8. van Hoogmoed CG, Geertsema-doornbusch GI, Teughels W, Quirynen M, Busscher HJ, van der Mei HC (2008) Reduction in periodontal pathogens adhesion by antagonistic strains. Oral Microbiol Immunol 23:43–48

    Article  PubMed  Google Scholar 

  9. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM (2012) Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective. Dent Mater 28:703–721

    Article  PubMed  Google Scholar 

  10. Bottino MC, Thomas V, Janowski GM (2011) A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater 7:216–224

    Article  PubMed  Google Scholar 

  11. Rodrigues RMJ, Goncalves C, Souto R, Feres-Filho EJ, Uzeda M, Colombo APV (2004) Antibiotics resistance profile of the subgingival microbiota following systemic or local tetracycline therapy. J Clin Periodontol 31:420–427

    Article  PubMed  Google Scholar 

  12. Killoy WJ (1999) Local delivery of antimicrobials: a new era in the treatment of adult periodontitis. Compend Contin Educ Dent 20:13–18

    PubMed  Google Scholar 

  13. Killoy WJ (2002) The clinical significance of local chemotherapies. J Clin Periodontol 29:22–29

    Article  PubMed  Google Scholar 

  14. Rams TE, Slots J (1996) Local delivery of antimicrobial agents in the periodontal pocket. Periodontol 10:139–159, 2000

    Article  Google Scholar 

  15. Thomas V, Zhang X, Vohra YK (2009) A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS bio-blends. Biotechnol Bioeng 104:1025–1033

    Article  PubMed  Google Scholar 

  16. Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629

    Article  PubMed  Google Scholar 

  17. Guggenheim B, Giertsen E, Schupbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370

    Article  PubMed  Google Scholar 

  18. Stookey GK, Stahlman DB (1976) Enhanced fluoride uptake in enamel with a fluoride-impregnated prophylactic cup. J Dent Res 55:333–341

    Article  PubMed  Google Scholar 

  19. Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL (2013) Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 92(11):963–969

    Article  PubMed  Google Scholar 

  20. Reise M, Wyrwa R, Müller U, Zylinski M, Völpel A, Schnabelrauch M, Berg A, Jandt KD, Watts DC, Sigusch BW (2012) Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment. Dent Mater 28(2):179–188

    Article  PubMed  Google Scholar 

  21. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2009) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  Google Scholar 

  22. Duan K, Sibley CD, Davidson CJ, Surette MG (2009) Chemical interactions between organisms in microbial communities. Contrib Microbiol 16:1–17

    Article  PubMed  Google Scholar 

  23. Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331

    Article  PubMed  Google Scholar 

  24. Teughels W, Kinder Haake S, Sliepen I, Pauwels M, van Eldere J, Cassiman J, Quirynen M (2007) Bacteria interfere with A. actinomycetemcomitans colonization. J Dent Res 86:611–617

    Article  PubMed  Google Scholar 

  25. Sliepen I, Hofkens J, van Essche M, Quirynen M, Teughels W (2008) Aggregatibacter actinomycetemcomitans adhesion inhibited in a flow cell. Oral Microbiol Immunol 23:520–524

    Article  PubMed  Google Scholar 

  26. Suci P, Young M (2011) Selective killing of Aggregatibacter actinomycetemcomitans by ciprofloxacin during development of a dual species biofilm with Streptococcus sanguinis. Arch Oral Biol 56:1055–1063

    Article  PubMed  Google Scholar 

  27. Elyzol® Colgate. http://colgate-sensitive-pro-relief.colgateprofessional.ro/products/Colgate-Elyzol-25-Dental-Gel/faqs. Accessed 21 January 2014

  28. Chow AW, Patten V, Guze LB (1975) Susceptibility of anaerobic bacteria to metronidazole: relative resistance of non-spore-forming gram-positive baccilli. J Infect Dis 131(2):182–185

    Article  PubMed  Google Scholar 

  29. Shaddox LM, Walker C (2009) Microbial testing in periodontics: value, limitations and future directions. Periodontol 2000(50):25–38

    Article  Google Scholar 

  30. Kalsi R, Vandana K, Prakash S (2011) Effect of local drug delivery in chronic periodontitis patients: a meta-analysis. J Indian Soc Periodontol 15(4):304–309

    Article  PubMed Central  PubMed  Google Scholar 

  31. Riep B, Purucker P, Bernimoulin J (1999) Repeated local metronidazole-therapy as adjunct to scaling and root planing in maintenance patients. J Clin Periodontol 26(11):710–715

    Article  PubMed  Google Scholar 

  32. Salvi G, Mombelli A, Mayfield L, Rutar A, Suvan J, Garrett S, Lang N (2002) Local antimicrobial therapy after initial periodontal treatment. J Clin Periodontol 29(6):540–550

    Article  PubMed  Google Scholar 

  33. Boland ED, Coleman BD, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1(1):115–123

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Research Support Funds Grant (RSFG) at Indiana University-Purdue University Indianapolis (IUPUI), by start-up funds from the IU School of Dentistry, and the NIH-NIDCR (Grant # DE023552) (all to M.C.B.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco C. Bottino.

Additional information

Marco C. Bottino and Rodrigo A. Arthur contributed equally to this manuscript

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottino, M.C., Arthur, R.A., Waeiss, R.A. et al. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria. Clin Oral Invest 18, 2151–2158 (2014). https://doi.org/10.1007/s00784-014-1201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-014-1201-x

Keywords

Navigation