Skip to main content

Advertisement

Log in

Rheological Evaluation of Inter-grade and Inter-batch Variability of Sodium Alginate

  • Research Article
  • Theme: Advances in Pharmaceutical Excipients Research and Use: Novel Materials, Functionalities and Testing
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

An Erratum to this article was published on 07 January 2011

Abstract

Polymeric excipients are often the least well-characterized components of pharmaceutical formulations. The aim of this study was to facilitate the QbD approach to pharmaceutical manufacturing by evaluating the inter-grade and inter-batch variability of pharmaceutical-grade polymeric excipients. Sodium alginate, a widely used polymeric excipient, was selected for evaluation using appropriate rheological methods and test conditions. The materials used were six different grades of sodium alginate and an additional ten batches of one of the grades. To compare the six grades, steady shear measurements were conducted on solutions at 1%, 2%, and 3% w/w, consistent with their use as thickening agents. Small-amplitude oscillation (SAO) measurements were conducted on sodium alginate solutions at higher concentrations (4–12% w/w) corresponding to their use in controlled-release matrices. In order to compare the ten batches of one grade, steady shear and SAO measurements were performed on their solutions at 2% w/w and 8% w/w, respectively. Results show that the potential interchangeability of these different grades used as thickening agents could be established by comparing the apparent viscosities of their solutions as a function of both alginate concentration and shear conditions. For sodium alginate used in controlled-release formulations, both steady shear behavior of solutions at low concentrations and viscoelastic properties at higher concentrations should be considered. Furthermore, among batches of the same grade, significant differences in rheological properties were observed, especially at higher solution concentrations. In conclusion, inter-grade and inter-batch variability of sodium alginate can be determined using steady shear and small-amplitude oscillation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. ICH. Guidance for Industry Q8 Pharmaceutical Development. In: U.S. Department of Health and Human Services, FDA, CDER, CBER. 2006.

  2. Moreton C. Functionality and performance of excipients in quality-by-design world part 4: obtaining information on excipient variability for formulation design space. Amer Pharm Rev. 2009;12:28–32.

    CAS  Google Scholar 

  3. Smidsroed O, Glover RM, Whittington SG. Relative extension of alginates having different chemical composition. Carbohydr Res. 1973;27:107–18.

    Article  CAS  Google Scholar 

  4. Stokke BT, Smidsroed O, Brant DA. Predicted influence of monomer sequence distribution and acetylation on the extension of naturally occurring alginates. Carbohydr Polym. 1993;22:57–66.

    Article  CAS  Google Scholar 

  5. Dentini M, Rinaldi G, Risica D, Barbetta A, Skjak-Braek G. Comparative studies on solution characteristics of mannuronan epimerized by C-5 epimerases. Carbohydr Polym. 2005;59:489–99.

    Article  CAS  Google Scholar 

  6. Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28:621–30.

    Article  CAS  PubMed  Google Scholar 

  7. Cable C. Sodium alginate. In: Rowe RC, Sheskey PJ, Owen SC, editors. Handbook of pharmaceutical excipients. 5th ed. Washington DC: American Pharmacists Association; 2006. p. 656–8.

    Google Scholar 

  8. Efentakis M, Buckton G. The effect of erosion and swelling on the dissolution of theophylline from low and high viscosity sodium alginate matrices. Pharm Dev Technol. 2002;7:69–77.

    Article  CAS  PubMed  Google Scholar 

  9. Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm. 2007;66:435–50.

    Article  CAS  PubMed  Google Scholar 

  10. Lucisano LJ, Breech JA, Angel LA, Franz RM. Evaluation of an alternate source of hydroxypropyl methylcellulose for use in a sustained-release tablet matrix. Pharm Technol. 1989;13:88–94.

    Google Scholar 

  11. Dahl TC, Calderwood T, Bormeth A, Trimble K, Piepmeier E. Influence of physicochemical properties of hydroxypropylmethylcellulose on naproxen release from sustained release matrix tablets. J Control Release. 1990;14:1–10.

    Article  CAS  Google Scholar 

  12. Perez-Marcos B, Martinez-Pacheco R, Gomez-Amoza JL, Souto C, Concheiro A, Rowe RC. Interlot variability of carbomer 934. Int J Pharm. 1993;100:207–12.

    Article  CAS  Google Scholar 

  13. Alvarez-Lorenzo C, Castro E, Gomez-Amoza JL, Martinez-Pacheco R, Souto C, Concheiro A. Intersupplier and interlot variability in hydroxypropyl cellulose: implications for theophylline release from matrix tablets. Pharm Acta Helv. 1998;73:113–20.

    Article  CAS  Google Scholar 

  14. Desai D, Rinaldi F, Kothari S, Paruchuri S, Li D, Lai M, et al. Effect of hydroxypropyl cellulose (HPC) on dissolution rate of hydrochlorothiazide tablets. Int J Pharm. 2006;308:40–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ikeda S, Nishinari K. “Weak gel”-type rheological properties of aqueous dispersions of nonaggregated kappa-carrageenan helices. J Agric Food Chem. 2001;49:4436–41.

    Article  CAS  PubMed  Google Scholar 

  16. Chronakis IS, Piculell L, Borgstrom J. Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: two types of gels. Carbohydr Polym. 1996;31:215–25.

    Article  CAS  Google Scholar 

  17. Schnaare RL, Block LH, Rohan LC. Rheology. In: Troy D, editor. Remington: the science and practice of pharmacy. 21st ed. Philadelphia: Wiliams & Wilkins; 2005. p. 338–57.

    Google Scholar 

  18. Block LH, Lamy PP. The rheological evaluation of semi-solids. J Soc Cosmet Chem. 1970;21:645–60.

    Google Scholar 

  19. Rezende RA, Bartolo PJ, Mendes A, Maciel Filho R. Rheological behavior of alginate solutions for biomanufacturing. J Appl Polym Sci. 2009;113:3866–71.

    Article  CAS  Google Scholar 

  20. Aminabhavi TM, Agnihotri SA, Naidu BVK. Rheological properties and drug release characteristics of pH-responsive hydrogels. J Appl Polym Sci. 2004;94:2057–64.

    Article  CAS  Google Scholar 

  21. Cancela MA, Alvarez E, Maceiras R. Polymers in alimentary industry: properties of the sodium alginate. Electron J Environ Agric Food Chem. 2003;2:380–7.

    Google Scholar 

  22. Nickerson MT, Paulson AT. Rheological properties of gellan, κ-carrageenan and alginate polysaccharides: effect of potassium and calcium ions on macrostructure assemblages. Carbohydr Polym. 2004;58:15–24.

    Article  CAS  Google Scholar 

  23. Hussain SM, Panda D, Tripathy MK, Tripathi DK. Rheological characterization of polymeric suspending agents. J Teach Res Chem. 2004;11:58–63.

    CAS  Google Scholar 

  24. Teli MD, Adivarekar RV, Chopade Y, Sequeira J. Rheological study of thickeners. Colourage. 2003;50:23–4. 6, 8–30, 2.

    CAS  Google Scholar 

  25. Gomez-Diaz D, Navaza JM. Rheological characterization of water-sodium alginate dispersions with applications in food industry. Cienc Tecnol Aliment. 2002;3:302–6.

    CAS  Google Scholar 

  26. Duggirala S, Deluca PP. Rheological characterization of cellulosic and alginate polymers. PDA J Pharm Sci Technol. 1996;50:290–6.

    CAS  PubMed  Google Scholar 

  27. Khardalov I, Glukharov S. Rheological behavior of alginate thickeners. Melliand Textilber. 1988;69:E450–1. 906-9.

    CAS  Google Scholar 

  28. Balmaceda E, Rha CK, Huang F. Rheological properties of hydrocolloids. J Food Sci. 1974;38:1169–73.

    Article  CAS  Google Scholar 

  29. Mancini M, Moresi M, Sappino F. Rheological behaviour of aqueous dispersions of algal sodium alginates. J Food Eng. 1996;28:283–95.

    Article  Google Scholar 

  30. Welz B. Atomic absorption spectrometry. In: Seiler HG, Sigel A, Sigel H, editors. Handbook on metals in clinical and analytical chemistry. New York: Marcel Dekker; 1994. p. 86–105.

    Google Scholar 

  31. Clementi F, Mancini M, Moresi M. Rheology of alginate from Azotobacter vinelandii in aqueous dispersions. J Food Eng. 1998;36:51–62.

    Article  Google Scholar 

  32. McHugh DJ. Production, properties and uses of alginates. In: McHugh DJ, editor. Production and utilization of products from commercial seaweeds: Food & Agriculture Organization of the United Nations (FAO); 1988. p. 43–91.

  33. Smidsroed O, Haug A. Effect of divalent metals on the properties of alginate solutions. I. Calcium ions. Acta Chem Scand. 1965;19:329–40.

    Article  CAS  Google Scholar 

  34. Llanes F, Sauriol F, Morin FG, Perlin AS. An examination of sodium alginate from Sargassum by NMR spectroscopy. Can J Chem. 1997;75:585–90.

    Article  CAS  Google Scholar 

  35. Salomonsen T, Jensen HM, Larsen FH, Steuernagel S, Engelsen SB. Alginate monomer composition studied by solution- and solid-state NMR—a comparative chemometric study. Food Hydrocoll. 2009;23:1579–86.

    Article  CAS  Google Scholar 

  36. Gonzalez FR, Marx-Figini M, Figini RV. Rheologic properties of semi-rigid polymers for the example of cellulose nitrate. 2. Influence of molecular-weight distribution on the flow curves of semidilute solutions. Makromol Chem. 1988;189:2409–17.

    Article  CAS  Google Scholar 

  37. Tayal A, Kelly RM, Khan SA. Rheology and molecular weight changes during enzymatic degradation of a water-soluble polymer. Macromolecules. 1999;32:294–300.

    Article  CAS  Google Scholar 

  38. Cheng Y, Prud’homme RK. Enzymatic degradation of guar and substituted guar galactomannans. Biomacromolecules. 2000;1:782–8.

    Article  CAS  PubMed  Google Scholar 

  39. Yu LX, Lionberger R, Olson MC, Johnston G, Buehler G, Winkle H. Quality by design for generic drugs. Pharm Technol. 2009;33:122–7.

    Google Scholar 

  40. Cox WP, Merz EH. Correlation of dynamic and steady-flow viscosities. J Polym Sci. 1958;28:619–22.

    Article  CAS  Google Scholar 

  41. Al-Hadithi TSR, Barnes HA, Walters K. The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems. Colloid Polym Sci. 1992;270:40–6.

    Article  CAS  Google Scholar 

  42. Miyoshi E, Nishinari K. Non-Newtonian flow behaviour of gellan gum aqueous solutions. Colloid Polym Sci. 1999;277:727–34.

    Article  CAS  Google Scholar 

  43. Bonferoni MC, Rossi S, Ferrari F, Bertoni M, Caramella C. Influence of medium on dissolution-erosion behavior of Na carboxymethyl cellulose and on viscoelastic properties of gels. Int J Pharm. 1995;117:41–8.

    Article  CAS  Google Scholar 

  44. Clark AH, Ross-Murphy SB. Structural and mechanical properties of biopolymer gels. Adv Polym Sci. 1987;83:57–192.

    Article  CAS  Google Scholar 

  45. Almdal K, Dyre J, Hvidt S, Kramer O. Towards a phenomenological definition of the term ‘gel’. Polym Gels Networks. 1993;1:5–17.

    Article  CAS  Google Scholar 

  46. Ju RTC, Nixon PR, Patel MV. Drug-release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug-release based on the polymer disentanglement concentration and the diffusion layer. J Pharm Sci. 1995;84:1455–63.

    Article  CAS  PubMed  Google Scholar 

  47. Liew CV, Chan LW, Ching AL, Heng PWS. Evaluation of sodium alginate as drug release modifier in matrix tablets. Int J Pharm. 2006;309:25–37.

    Article  CAS  PubMed  Google Scholar 

  48. Tugcu-Demiroz F, Acarturk F, Takka S, Konus-Boyunaga O. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur J Pharm Biopharm. 2007;67:491–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Brian Carlin (FMC Biopolymer, Princeton, NJ) for providing the various grades and batches of sodium alginate used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Block.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1208/s12249-010-9579-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, S., Thacker, A., Sperger, D.M. et al. Rheological Evaluation of Inter-grade and Inter-batch Variability of Sodium Alginate. AAPS PharmSciTech 11, 1662–1674 (2010). https://doi.org/10.1208/s12249-010-9547-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9547-0

Key words

Navigation