Skip to main content

Advertisement

Log in

Covariate Pharmacokinetic Model Building in Oncology and its Potential Clinical Relevance

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

When modeling pharmacokinetic (PK) data, identifying covariates is important in explaining interindividual variability, and thus increasing the predictive value of the model. Nonlinear mixed-effects modeling with stepwise covariate modeling is frequently used to build structural covariate models, and the most commonly used software—NONMEM—provides estimations for the fixed-effect parameters (e.g., drug clearance), interindividual and residual unidentified random effects. The aim of covariate modeling is not only to find covariates that significantly influence the population PK parameters, but also to provide dosing recommendations for a certain drug under different conditions, e.g., organ dysfunction, combination chemotherapy. A true covariate is usually seen as one that carries unique information on a structural model parameter. Covariate models have improved our understanding of the pharmacology of many anticancer drugs, including busulfan or melphalan that are part of high-dose pretransplant treatments, the antifolate methotrexate whose elimination is strongly dependent on GFR and comedication, the taxanes and tyrosine kinase inhibitors, the latter being subject of cytochrome p450 3A4 (CYP3A4) associated metabolism. The purpose of this review article is to provide a tool to help understand population covariate analysis and their potential implications for the clinic. Accordingly, several population covariate models are listed, and their clinical relevance is discussed. The target audience of this article are clinical oncologists with a special interest in clinical and mathematical pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ette EI, Williams PJ. Population pharmacokinetics I: background, concepts, and models. Ann Pharmacother. 2004;38(10):1702–6.

    Article  PubMed  Google Scholar 

  2. Wade JR, Edholm M, Salmonson T. A guide for reporting the results of population pharmacokinetic analyses: a Swedish perspective. AAPS J. 2005;7(2):45.

    Article  PubMed  Google Scholar 

  3. Bauer RJ. NONMEM Users Guide: introduction to NONMEM 7. Ellicott City: ICON Development Solutions; 2010.

    Google Scholar 

  4. Beal SL, Sheiner BL. NONMEM Project Group: NONMEM User’s Guide. San Francisco: University of California; 1998.

    Google Scholar 

  5. Pharsight. Phoenix NLME Software Review. Phoenix; 2011.

  6. Galecki AT. NLMEM: a new SAS/IML macro for hierarchical nonlinear models. Comput Methods Programs Biomed. 1998;55(3):207–16.

    Article  PubMed  CAS  Google Scholar 

  7. Chan PL, Jacqmin P, Lavielle M, McFadyen L, Weatherley B. The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinet Pharmacodyn. 2011;38(1):41–61.

    Article  PubMed  Google Scholar 

  8. PKBUGS. The PKBUGS Project. 2011 [cited 2011 December 28, 2011].

  9. Guidance for Industry: Population Pharmacokinetics. U.S. Department of Health and Human Services, FDA; 1999; Available from: http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM133184.pdf

  10. EMA. Guidelines on reporting the results of population pharmacokinetic analyses. Committee for Medicinal Products for Human Use (CHMP); 2007.

  11. Jonsson EN, Karlsson MO. Automated covariate model building within NONMEM. Pharm Res. 1998;15(9):1463–8.

    Article  PubMed  CAS  Google Scholar 

  12. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm. 1992;20(5):511–28.

    Article  PubMed  CAS  Google Scholar 

  13. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther. 1997;61(3):275–91.

    Article  PubMed  CAS  Google Scholar 

  14. Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol. 2000;40:67–95.

    Article  PubMed  CAS  Google Scholar 

  15. Han PY, Kirkpatrick CM, Green B. Informative study designs to identify true parameter-covariate relationships. J Pharmacokinet Pharmacodyn. 2009;36(2):147–63.

    Article  PubMed  Google Scholar 

  16. Wahlby U, Jonsson EN, Karlsson MO. Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci. 2002;4(4):E27.

    Article  PubMed  Google Scholar 

  17. Ribbing J, Nyberg J, Caster O, Jonsson EN. The lasso—a novel method for predictive covariate model building in nonlinear mixed effects models. J Pharmacokinet Pharmacodyn. 2007;34(4):485–517.

    Article  PubMed  Google Scholar 

  18. Kowalski KG, Hutmacher MM. Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test. J Pharmacokinet Pharmacodyn. 2001;28(3):253–75.

    Article  PubMed  CAS  Google Scholar 

  19. Ribbing J, Jonsson EN. Power, selection bias and predictive performance of the population pharmacokinetic covariate model. J Pharmacokinet Pharmacodyn. 2004;31(2):109–34.

    Article  PubMed  CAS  Google Scholar 

  20. Bonate PL. The effect of collinearity on parameter estimates in nonlinear mixed effect models. Pharm Res. 1999;16(5):709–17.

    Article  PubMed  CAS  Google Scholar 

  21. Karlsson MO, Beal SL, Sheiner LB. Three new residual error models for population PK/PD analyses. J Pharmacokinet Biopharm. 1995;23(6):651–72.

    Article  PubMed  CAS  Google Scholar 

  22. Davidian M, Gallant AR. Smooth nonparametric maximum likelihood estimation for population pharmacokinetics, with application to quinidine. J Pharmacokinet Biopharm. 1992;20(5):529–56.

    Article  PubMed  CAS  Google Scholar 

  23. Park K, Verotta D, Gupta SK, Sheiner LB. Use of a pharmacokinetic/pharmacodynamic model to design an optimal dose input profile. J Pharmacokinet Biopharm. 1998;26(4):471–92.

    Article  PubMed  Google Scholar 

  24. Wahlby U, Thomson AH, Milligan PA, Karlsson MO. Models for time-varying covariates in population pharmacokinetic-pharmacodynamic analysis. Br J Clin Pharmacol. 2004;58(4):367–77.

    Article  PubMed  Google Scholar 

  25. European Medicines Agency (EMA). E15 definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. Available from: http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002880.pdf

  26. U.S. Food and Drug Administration (FDA). E15 definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data and sample coding categories. Available from: http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm129296.pdf

  27. European Medicines Agency (EMA). Reflection paper on the use of pharmacogenetics in the pharmacokinetic evaluation of medicinal products. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003890.pdf

  28. Bertrand J, Comets E, Laffont CM, Chenel M, Mentre F. Pharmacogenetics and population pharmacokinetics: impact of the design on three tests using the SAEM algorithm. J Pharmacokinet Pharmacodyn. 2009;36(4):317–39.

    Article  PubMed  Google Scholar 

  29. Zandvliet AS, Huitema AD, Copalu W, Yamada Y, Tamura T, Beijnen JH, et al. CYP2C9 and CYP2C19 polymorphic forms are related to increased indisulam exposure and higher risk of severe hematologic toxicity. Clin Cancer Res. 2007;13(10):2970–6.

    Article  PubMed  CAS  Google Scholar 

  30. Bosch TM, Huitema AD, Doodeman VD, Jansen R, Witteveen E, Smit WM, et al. Pharmacogenetic screening of CYP3A and ABCB1 in relation to population pharmacokinetics of docetaxel. Clin Cancer Res. 2006;12(19):5786–93.

    Article  PubMed  CAS  Google Scholar 

  31. Chou M, Bertrand J, Segeral O, Verstuyft C, Borand L, Comets E, et al. Population pharmacokinetic-pharmacogenetic study of nevirapine in HIV-infected Cambodian patients. Antimicrob Agents Chemother. 2010;54(10):4432–9.

    Article  PubMed  CAS  Google Scholar 

  32. Wahlby U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001;28(3):231–52.

    Article  PubMed  CAS  Google Scholar 

  33. Viallefont V, Raftery AE, Richardson S. Variable selection and Bayesian model averaging in case-control studies. Stat Med. 2001;20(21):3215–30.

    Article  PubMed  CAS  Google Scholar 

  34. Jonsson EN, Karlsson MO. Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  35. Holford N. The visual predictive check—superiority to standard diagnostic (Rorschach) Plots. PAGE meeting 2005. Abstract 738.

  36. The R Project for Statistical Computing. http://wwwr-projectorg/

  37. Lindbom L, Tunblad K, McFadyen L, Jonsson EN, Marshall S, Karlsson MO. The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data. PAGE meeting 2006. Abstract 957.

  38. Brendel K, Comets E, Laffont C, Laveille C, Mentre F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–49.

    Article  PubMed  CAS  Google Scholar 

  39. Bruno R, Vivier N, Vergniol JC, De Phillips SL, Montay G, Sheiner LB. A population pharmacokinetic model for docetaxel (Taxotere): model building and validation. J Pharmacokinet Biopharm. 1996;24(2):153–72.

    Article  PubMed  CAS  Google Scholar 

  40. Sheiner LB, Beal SL. Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm. 1981;9(4):503–12.

    Article  PubMed  CAS  Google Scholar 

  41. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.

    Article  PubMed  Google Scholar 

  42. Duffull SB, Wright DF, Winter HR. Interpreting population pharmacokinetic-pharmacodynamic analyses—a clinical viewpoint. Br J Clin Pharmacol. 2011;71:807–14.

    Article  PubMed  CAS  Google Scholar 

  43. Ludbrook J. Multiple comparison procedures updated. Clin Exp Pharmacol Physiol. 1998;25(12):1032–7.

    Article  PubMed  CAS  Google Scholar 

  44. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49(12):1373–9.

    Article  PubMed  CAS  Google Scholar 

  45. Duffull SB, Kirkpatrick CMJ, Green B, Holford NHG. Analysis of population pharmacokinetic data using NONMEM and WinBUGS. J Biopharm Stats. 2005;15(1):53–73.

    Article  Google Scholar 

  46. Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci. 1982;71(12):1344–8.

    Article  PubMed  CAS  Google Scholar 

  47. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed  Google Scholar 

  48. Bourguignon L, Ducher M, Matanza D, Bleyzac N, Uhart M, Odouard E, et al. The value of population pharmacokinetics and simulation for postmarketing safety evaluation of dosing guidelines for drugs with a narrow therapeutic index: buflomedil as a case study. Fundam Clin Pharmacol. 2011.

  49. Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method. Pharm Res. 2007;24(12):2187–97.

    Article  PubMed  CAS  Google Scholar 

  50. Mathijssen RH, de Jong FA, Loos WJ, van der Bol JM, Verweij J, Sparreboom A. Flat-fixed dosing versus body surface area based dosing of anticancer drugs in adults: does it make a difference? Oncologist. 2007;12(8):913–23.

    Article  PubMed  Google Scholar 

  51. Skipper HE. Biochemical, biological, pharmacologic, toxicologic, kinetic and clinical (subhuman and human) relationships. Cancer. 1968;21(4):600–10.

    Article  PubMed  CAS  Google Scholar 

  52. Freireich EJ, Gehan EA, Rall DP, Schmidt LH, Skipper HE. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966;50(4):219–44.

    PubMed  CAS  Google Scholar 

  53. Ekhart C, de Jonge ME, Huitema AD, Schellens JH, Rodenhuis S, Beijnen JH. Flat dosing of carboplatin is justified in adult patients with normal renal function. Clin Cancer Res. 2006;12(21):6502–8.

    Article  PubMed  CAS  Google Scholar 

  54. Schott AF, Rae JM, Griffith KA, Hayes DF, Sterns V, Baker LH. Combination vinorelbine and capecitabine for metastatic breast cancer using a non-body surface area dosing scheme. Cancer Chemother Pharmacol. 2006;58(1):129–35.

    Article  PubMed  CAS  Google Scholar 

  55. Slattery JT, Clift RA, Buckner CD, Radich J, Storer B, Bensinger WI, et al. Marrow transplantation for chronic myeloid leukemia: the influence of plasma busulfan levels on the outcome of transplantation. Blood. 1997;89(8):3055–60.

    PubMed  CAS  Google Scholar 

  56. Booth BP, Rahman A, Dagher R, Griebel D, Lennon S, Fuller D, et al. Population pharmacokinetic-based dosing of intravenous busulfan in pediatric patients. J Clin Pharmacol. 2007;47(1):101–11.

    Article  PubMed  CAS  Google Scholar 

  57. Hassan M, Fasth A, Gerritsen B, Haraldsson A, Syruckova Z, van den Berg H, et al. Busulphan kinetics and limited sampling model in children with leukemia and inherited disorders. Bone Marrow Transplant. 1996;18(5):843–50.

    PubMed  CAS  Google Scholar 

  58. Nguyen L, Leger F, Lennon S, Puozzo C. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: a population pharmacokinetic study. Cancer Chemother Pharmacol. 2006;57(2):191–8.

    Article  PubMed  CAS  Google Scholar 

  59. European Medicines Agency (EMA). Busulfan: Summary of Product Characteristics. 2005; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000472/WC500052062.pdf

  60. Pierre Fabre Médicament. Melphalan: Summary of Product Characteristics. 2004; Available from: http://www.vinorelbine.com/doc/SMPC_v.pdf

  61. Nath CE, Shaw PJ, Montgomery K, Earl JW. Melphalan pharmacokinetics in children with malignant disease: influence of body weight, renal function, carboplatin therapy and total body irradiation. Br J Clin Pharmacol. 2005;59(3):314–24.

    Article  PubMed  CAS  Google Scholar 

  62. Nath CE, Shaw PJ, Montgomery K, Earl JW. Population pharmacokinetics of melphalan in paediatric blood or marrow transplant recipients. Br J Clin Pharmacol. 2007;64(2):151–64.

    Article  PubMed  CAS  Google Scholar 

  63. Timm R, Kaiser R, Lotsch J, Heider U, Sezer O, Weisz K, et al. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenomics J. 2005;5(6):365–73.

    Article  PubMed  CAS  Google Scholar 

  64. Huitema AD, Mathot RA, Tibben MM, Rodenhuis S, Beijnen JH. A mechanism-based pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J Pharmacokinet Pharmacodyn. 2001;28(3):211–30.

    Article  PubMed  CAS  Google Scholar 

  65. Jen JF, Cutler DL, Pai SM, Batra VK, Affrime MB, Zambas DN, et al. Population pharmacokinetics of temozolomide in cancer patients. Pharm Res. 2000;17(10):1284–9.

    Article  PubMed  CAS  Google Scholar 

  66. Panetta JC, Kirstein MN, Gajjar A, Nair G, Fouladi M, Heideman RL, et al. Population pharmacokinetics of temozolomide and metabolites in infants and children with primary central nervous system tumors. Cancer Chemother Pharmacol. 2003;52(6):435–41.

    Article  PubMed  CAS  Google Scholar 

  67. UK electronic Medicines Compendium (eMC). Temozolomide: Summary of Product Characteristics. 2011. Available from: http://www.medicines.org.uk/emc/document.aspx?documentid=7027

  68. Launay-Iliadis MC, Bruno R, Cosson V, Vergniol JC, Oulid-Aissa D, Marty M, et al. Population pharmacokinetics of docetaxel during phase I studies using nonlinear mixed-effect modeling and nonparametric maximum-likelihood estimation. Cancer Chemother Pharmacol. 1995;37(1–2):47–54.

    Article  PubMed  CAS  Google Scholar 

  69. Bruno R, Hille D, Riva A, Vivier N, ten Bokkel Huinnink WW, van Oosterom AT, et al. Population pharmacokinetics/pharmacodynamics of docetaxel in phase II studies in patients with cancer. J Clin Oncol. 1998;16(1):187–96.

    PubMed  CAS  Google Scholar 

  70. Slaviero KA, Clarke SJ, McLachlan AJ, Blair EY, Rivory LP. Population pharmacokinetics of weekly docetaxel in patients with advanced cancer. Br J Clin Pharmacol. 2004;57(1):44–53.

    Article  PubMed  CAS  Google Scholar 

  71. European Medicines Agency (EMA). Docetaxel: Summary of Product Characteristics. 2002; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000073/WC500035264.pdf

  72. Joerger M, Huitema AD, Huizing MT, Willemse PH, de Graeff A, Rosing H, et al. Safety and pharmacology of paclitaxel in patients with impaired liver function: a population pharmacokinetic-pharmacodynamic study. Br J Clin Pharmacol. 2007;64(5):622–33.

    Article  PubMed  CAS  Google Scholar 

  73. Joerger M, Huitema AD, van den Bongard DH, Schellens JH, Beijnen JH. Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of paclitaxel in patients with solid tumors. Clin Cancer Res. 2006;12(7 Pt 1):2150–7.

    Article  PubMed  CAS  Google Scholar 

  74. Schornagel JH, McVie JG. The clinical pharmacology of methotrexate. Cancer Treat Rev. 1983;10(1):53–75.

    Article  PubMed  CAS  Google Scholar 

  75. Joerger M, Huitema AD, van den Bongard HJ, Baas P, Schornagel JH, Schellens JH, et al. Determinants of the elimination of methotrexate and 7-hydroxy-methotrexate following high-dose infusional therapy to cancer patients. Br J Clin Pharmacol. 2006;62(1):71–80.

    Article  PubMed  CAS  Google Scholar 

  76. Latz JE, Chaudhary A, Ghosh A, Johnson RD. Population pharmacokinetic analysis of ten phase II clinical trials of pemetrexed in cancer patients. Cancer Chemother Pharmacol. 2006;57(4):401–11.

    Article  PubMed  Google Scholar 

  77. U.S. Food and Drug Administration (FDA). Pemetrexed: Summary of Product Characteristics. 2004; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021462s021lbl.pdf

  78. Sugiyama E, Kaniwa N, Kim SR, Hasegawa R, Saito Y, Ueno H, et al. Population pharmacokinetics of gemcitabine and its metabolite in Japanese cancer patients: impact of genetic polymorphisms. Clin Pharmacokinet. 2010;49(8):549–58.

    Article  PubMed  CAS  Google Scholar 

  79. Bonate PL, Craig A, Gaynon P, Gandhi V, Jeha S, Kadota R, et al. Population pharmacokinetics of clofarabine, a second-generation nucleoside analog, in pediatric patients with acute leukemia. J Clin Pharmacol. 2004;44(11):1309–22.

    Article  PubMed  CAS  Google Scholar 

  80. Mould DR, Holford NH, Schellens JH, Beijnen JH, Hutson PR, Rosing H, et al. Population pharmacokinetic and adverse event analysis of topotecan in patients with solid tumors. Clin Pharmacol Ther. 2002;71(5):334–48.

    Article  PubMed  CAS  Google Scholar 

  81. UK electronic Medicines Compendium (eMC). Topotecan: Summary of Product Characteristics. 2011; Available from: http://www.medicines.org.uk/emc/medicine/15277/SPC

  82. Schmidli H, Peng B, Riviere GJ, Capdeville R, Hensley M, Gathmann I, et al. Population pharmacokinetics of imatinib mesylate in patients with chronic-phase chronic myeloid leukaemia: results of a phase III study. Br J Clin Pharmacol. 2005;60(1):35–44.

    Article  PubMed  CAS  Google Scholar 

  83. Kretz O, Weiss HM, Schumacher MM, Gross G. In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia. Br J Clin Pharmacol. 2004;58(2):212–6.

    Article  PubMed  CAS  Google Scholar 

  84. Delbaldo C, Chatelut E, Re M, Deroussent A, Seronie-Vivien S, Jambu A, et al. Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res. 2006;12(20 Pt 1):6073–8.

    Article  PubMed  CAS  Google Scholar 

  85. Lu JF, Eppler SM, Wolf J, Hamilton M, Rakhit A, Bruno R, et al. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther. 2006;80(2):136–45.

    Article  PubMed  CAS  Google Scholar 

  86. Li J, Karlsson MO, Brahmer J, Spitz A, Zhao M, Hidalgo M, et al. CYP3A phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst. 2006;98(23):1714–23.

    Article  PubMed  CAS  Google Scholar 

  87. European Medicines Agency (EMA). Erlotinib: Summary of Product Characteristics. 2005; Available from: http://www.tarceva.net/portal/synergy/static/file/synergy/alfproxy/download/1414-5674b9efe2f811dd83dc3bed23a06c8f/last/pacreatic.pdf

  88. Houk BE, Bello CL, Kang D, Amantea M. A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res. 2009;15(7):2497–506.

    Article  PubMed  CAS  Google Scholar 

  89. European Medicines Agency (EMA). Sunitinib: Summary of Product Characteristics. 2010; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000687/WC500057737.pdf

  90. Bruno R, Lu JF, Sun YN, Claret L. A modeling and simulation framework to support early clinical drug development decisions in oncology. J Clin Pharmacol. 2011;51(1):6–8.

    Article  PubMed  Google Scholar 

  91. Joerger M, Burgers JA, Baas P, Doodeman VD, Smits PH, Jansen RS, et al. Gene polymorphisms, pharmacokinetics, and hematological toxicity in advanced non-small-cell lung cancer patients receiving cisplatin/gemcitabine. Cancer Chemother Pharmacol. 2011;69:25–33.

    Article  PubMed  Google Scholar 

  92. Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, Geoerger B, et al. Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res. 2008;14(21):7102–9.

    Article  PubMed  CAS  Google Scholar 

  93. Tanii H, Shitara Y, Horie T. Population pharmacokinetic analysis of letrozole in Japanese postmenopausal women. Eur J Clin Pharmacol. 2011;67(10):1017–25.

    Article  PubMed  Google Scholar 

  94. Hawwa AF, Collier PS, Millership JS, McCarthy A, Dempsey S, Cairns C, et al. Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia. Br J Clin Pharmacol. 2008;66(6):826–37.

    Article  PubMed  CAS  Google Scholar 

  95. Zandvliet AS, Schellens JH, Copalu W, Beijnen JH, Huitema AD. A semi-physiological population pharmacokinetic model describing the non-linear disposition of indisulam. J Pharmacokinet Pharmacodyn. 2006;33(5):543–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Joerger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joerger, M. Covariate Pharmacokinetic Model Building in Oncology and its Potential Clinical Relevance. AAPS J 14, 119–132 (2012). https://doi.org/10.1208/s12248-012-9320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9320-2

KEY WORDS

Navigation