Skip to main content

Advertisement

Log in

Preparation and physicochemical characterization of dioctyl sodium sulfosuccinate (aerosol OT) microemulsion for oral drug delivery

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The performance of dioctyl sodium sulfosuccinate (aerosol OT) in the development of a pharmaceutically acceptable, stable, self-emulsifying water continuous microemulsion with high dilution efficiency was assessed. A pseudoternary microemulsion system was constructed using aerosol OT/medium-chain triglycerides with oleic acid/glycerol monooleate and water. The model microemulsion was characterized with regard to its electroconductive behavior, eosin sodium absorption, interfacial tension, and droplet size measurements after dilution with water. The percolation transition law, which makes it possible to determine the percolation threshold and to identify bicontinuous structures, was applied to the system. The interfacial tension changes associated with the microemulsion formation revealed ultralow values up to 30% oil at a surfactant/cosurfactant ratio of 3∶1. Moreover, the investigated particle size and polydispersity using photon correlation spectroscopy after dilution with excess of the continuous phase proved the efficiency of the microemulsion system as a drug carrier that ensures an infinitely dilutable, homogeneous, and thermodynamically stable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourrel M, Schechter RS. The R ratio. In: Bourrel M, Schechter RS, eds. Microemulsions and Related Systems, New York, NY: Marcel Dekker, 1988:1–30.

    Google Scholar 

  2. Constantinides PP, Scalart JP, Lancaster C, et al. Formulation and intestinal absorption enhancement evaluation of water in oil microemulsion incorporating medium chain glycerides. Pharm Res. 1994;11(10):1385–1390.

    Article  PubMed  CAS  Google Scholar 

  3. Beskid G, Unowsky J, Behl CR, et al. Enteral, oral and rectal absorption of ceftriaxone using glyceride enhancers. Chemotherapy. 1988;84:77–84.

    Google Scholar 

  4. Plain KJ, Phillips AJ, Ning A. The oral absorption of cefoxitin from oil and emulsion vesicles in rats. Int J Pharm. 1986;33:99–104.

    Article  Google Scholar 

  5. Hauser B, Meinzer A, Posanski U, Richter F. Cyclosporin emulsion composition. GB patent application 2 222 770. March 21, 1990.

  6. Engel RH, Riggi SJ. Intestinal absorption of heparin facilitated by sulfated or sulfonated surfactants. J Pharm Sci. 1969;58(6):706–709.

    Article  PubMed  CAS  Google Scholar 

  7. Khalafallah N, Gouda MW, Khalil SA. Effect of surfactants on absorption through membranes, IV: effects of dioctyl sodium sulfosuccinate on absorption of a poorly absorbable drug, phenolsulfonphthalein, in human. J Pharm Sci. 1975;64:991–994.

    Article  PubMed  CAS  Google Scholar 

  8. Osborne DW, Ward AJI, O Neill KJ. Microemulsions as topical drug delivery vehicles: in vitro transdermal studies of a model hydrophilic drug. J Pharm Pharmacol. 1991;43:451–454.

    CAS  Google Scholar 

  9. Osborne DW, Ward AJI, O Neill KJ. Microemulsions as topical drug delivery vehicles, I: characterization of a model system. Drug Dev Ind Pharm. 1988;14(9):1203–1219.

    Article  CAS  Google Scholar 

  10. Trotta M, Gasco MR, Morel S. Release of drugs from oilwater microemulsions. J Control Release. 1989;10:237–243.

    Article  CAS  Google Scholar 

  11. Constantinides PP. Microemulsions comprising therapeutic peptides. PCT patent wo 94/19001. September 1, 1994.

  12. Ogiso T, Shintani M. Mechanism for the enhancement effect of fatty acids on the percutaneous absorption of propranolol. J Pharm Sci. 1990;79:1065–1071.

    Article  PubMed  CAS  Google Scholar 

  13. Cooper ER. Increased skin permeability for lipophilic molecules. J Pharm Sci. 1984;73:1153–1156.

    Article  PubMed  CAS  Google Scholar 

  14. Charman WNA, Stella VJ. Effects of lipid class and lipid vehicle volume on the intestinal lymphatic transport of DDT. Int J Pharm. 1986;33:165–172.

    Article  CAS  Google Scholar 

  15. Gowan WG, Stavchansky S. The effect of solvent composition upon the blood and lymph levels of phenytoin in rats after gastric administration. Int J Pharm. 1986;28:193–199.

    Article  CAS  Google Scholar 

  16. Aboofazeli R, Lawrence MJ. Investigations into the formation and characterization of phospholipid microemulsions, II: psedoternary phase diagrams of systems containing water-lecithiisopropyl myristate and alcohol: influence of purity of lecithin. Int J Pharm. 1994;106:51–61.

    Article  CAS  Google Scholar 

  17. Clausse M, Nicolas Morgantini L, Zradba A, Touraud D. Water/ionic surfactant/alkanol/hydrocarbon system. In: Rosano HL, Clausse M, eds. Microemulsion Systems. New York, NY: Marcel Dekker, 1987:15–63.

    Google Scholar 

  18. Clausse M, Nicolas Morgantini L, Zradba A. Water/sodium dodecylsulfate/1-pentanol/N-dodecane microemulsions. In: Rosano HL, Clausse M, eds. Microemulsion Systems. New York, NY: Marcel Dekker, 1987:387–425.

    Google Scholar 

  19. John CH. Microemulsions. In: Surfactant Aggregation., New York, NY: Blackie, Chapman and Hall; 1992:227–230.

    Google Scholar 

  20. Prince LM. Microemulsion? A Technical Explanation. In: Microemulsions: Theory and Practice. New York, NY: Academic Press; 1977:51–56.

    Google Scholar 

  21. Lu JR, Thomas RK, Binks BP, Fletcher PDI, Penfold J. Structure and composition of dodecane layers spread on aqueous solutions of dodecyl- and hexadecyltrimethylammonium bromides by neutron reflection. J Phys Chem. 1995;99:4113–4123.

    Article  CAS  Google Scholar 

  22. Baker RC, Florence AT, Ottewill RH, Tadros THF. Investigations into the formation and characterization of microemulsions II Light scattering, conductivity and viscosity studies of microemulsions. J Colloid Interface Sci. 1984;100:332–349.

    Article  CAS  Google Scholar 

  23. Carlfors J, Blute I, Schmidt V. Lidocaine in microemulsions: a dermal delivery system. J Dispers Sci Technol. 1991;12:467–482.

    Article  CAS  Google Scholar 

  24. Kirkpatrick S. Percolation and conduction. Rev Mod Phys. 1973;45:574–588.

    Article  Google Scholar 

  25. De Gennes PG. La percolation: un concept unificateur. Recherche. 1976;72:919–927.

    Google Scholar 

  26. Lagües M, Sauterey C. Percolation transition in water in oil microemulsions: electrical conductivity measurements. J Phys Chem. 1980;84:3503–3508.

    Article  Google Scholar 

  27. Safran SA, Grest GS, Bug ALM, Webma I. Percolation in interacting systems. In: Rosano HL, Clausse M, eds. Microemulsion Systems. New York, NY: Marcel Dekker; 1987;235–245.

    Google Scholar 

  28. Saski W, Shah SG. Availability of drugs in the presence of surface active agents: critical micelle concentrations of some oxyethylene-oxypropylene polymers. J Pharm Sci. 1965;54:71–74.

    Article  PubMed  CAS  Google Scholar 

  29. Becher P. Nonionic surface active compounds, VI: determination of critical micelle concentration by a spectral dye method. J Phys Chem. 1962;66:374–378.

    Article  CAS  Google Scholar 

  30. Ingo S, Sigrid K. Poloxamer systems as potential ophthalmics, II: microemulsions. Eur J Pharm Biopharm. 1993;39(1):25–30.

    Google Scholar 

  31. Schulman JH, Stoeckenius W, Prince LM. Mechanism of formation and structure of microemulsions by electron microscopy. J Phys Chem. 1959;63:1677–1680.

    Article  CAS  Google Scholar 

  32. Satra C, Thomas M, Lawrence MJ. The solubility of testosterone in oil in water microemulsions. J Pharm Pharmacol. 1995;47:1126.

    Google Scholar 

  33. Bellocq AM, Bourbon D, Lemanceau B. Three dimensional phase diagrams and interfacial tensions of the water-dodecanepentanol-sodium octylbenzene sulfonate system. J Colloid Interface Sci. 1981;79:419–431.

    Article  CAS  Google Scholar 

  34. Aveyard R, Binks BP, Fletcher PDI, MacNab JR. Interaction of alkanes with monolayers of nonionic surfactants. Langmuir. 1995;11:2515–2524.

    Article  CAS  Google Scholar 

  35. Meinzer A, Müller E, Vonderscher J. Perorale mikroemulsions formulierung—Sandimmun Optoral/Neoral. In: Müller RH, Hildebrand GE, eds. Pharmazeutische Technologie: Moderne Arzneiformen. Stüttgart, Germany: Wissenschaftliche Verlagsgesellschaft; 1997;117:169–177.

    Google Scholar 

  36. Trotta M, Gasco MR, Pattarino F. Effect of alcohol cosurfactants on the diffusion coefficients of microemulsions by light scattering. J Dispers Sci Tech. 1989;10:15–32.

    Article  CAS  Google Scholar 

  37. Trotta M, Gasco MR, Pattarino F. Diffusion of steroid hormones from o/w microemulsions: influence of the cosurfactant. Acta Pharm Technol. 1990;36(4):226–231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanan M. El-Laithy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Laithy, H.M. Preparation and physicochemical characterization of dioctyl sodium sulfosuccinate (aerosol OT) microemulsion for oral drug delivery. AAPS PharmSciTech 4, 11 (2003). https://doi.org/10.1208/pt040111

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt040111

Keywords

Navigation