Skip to main content
Log in

Self-emulsification of Lipidic Drug Delivery System in Pure Water and in Concentrated Glycerol Solution

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Self-emulsifying drug delivery systems (SEDDS), often intended for oral delivery, are normally explored in biorelevant aqueous media. The high complexity of these multi-component systems leaves the understanding of self-emulsification poor, hindering formulation rationalization. In this work, we aimed to fill this gap by studying the effects of glycerol on the self-emulsification of a ternary component formulation made of 20% w/w Tween 80, 15% w/w Span 80, and 65% w/w Captex 300 Low C6. The behavior of SEDDS in pure water and a binary mixture of water and glycerol (58.8% w/w) were investigated by optical microscopy, SAXS (small angle X-ray scattering), dynamic light scattering, and surface tension measurements. The presence of glycerol, at 58.8% w/w, altered the self-emulsification behavior by suppressing the formation of lamellar structures observed in the presence of water, reducing the droplet mean diameter from 0.2 to 0.1 μm and changing the mechanism of self-emulsification. As co-surfactant, glycerol may intercalate within the polyoxyethylene chains of the surfactant at the palisade layer, increasing the interface flexibility and expanding it. Since no free water is available at the investigated glycerol concentration, glycerol, which is also a co-solvent, may additionally modify long-range interactions by reducing Van-der-Waals attractions or giving rise to repulsive surface-solvent mediated forces of entropic origin. These effects could be exploited to rationalize SEDDS formulations, widening their use within the pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Kumar P, Mittal K. Handbook of microemulsion science and technology: CRC Press; 1999.

  2. Davies JT, Rideal EK. Interfacial phenomena: Elsevier; 1961. doi:10.1016/B978-0-12-206056-4.50012-6.

  3. Shahidzadeh N, Bonn D, Aguerre-Chariol O, Meunier J. Spontaneous emulsification: relation to microemulsion phase behaviour. Colloids Surfaces A Physicochem Eng Asp. 1999;147(3):375–80. doi:10.1016/S0927-7757(98)00711-0.

    Article  CAS  Google Scholar 

  4. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 12(11):1561–72. doi:10.1023/A:1016268311867.

  5. Mercuri A, Belton PS, Royall PG, Barker SA. Identification and molecular interpretation of the effects of drug incorporation on the self-emulsification process using spectroscopic, micropolarimetric and microscopic measurements. Mol Pharm. 2012;9(9):2658–68. doi:10.1021/mp300219h.

    Article  CAS  PubMed  Google Scholar 

  6. Mercuri A, Passalacqua A, Wickham MSJ, Faulks RM, Craig DQM, Barker SA. The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study. Pharm Res. 2011;28(7):1540–51. doi:10.1007/s11095-011-0387-8.

    Article  CAS  PubMed  Google Scholar 

  7. Pouton CW. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm. 1985;27(2–3):335–48. doi:10.1016/0378-5173(85)90081-X.

    Article  CAS  Google Scholar 

  8. Tang B, Cheng G, Gu JC, Xu CH. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12. doi:10.1016/j.drudis.2008.04.006.

    Article  CAS  PubMed  Google Scholar 

  9. Patel D, Sawant KK. Oral bioavailability enhancement of acyclovir by self-microemulsifying drug delivery systems (SMEDDS). Drug Dev Ind Pharm. 2007;33(12):1318–26. doi:10.1080/03639040701385527.

  10. Müllertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62(11):1622–36. doi:10.1111/j.2042-7158.2010.01107.x.

  11. Craig DQM, Lievens HSR, Pitt KG, Storey DE. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm. 1993;96(1–3):147–55. doi:10.1016/0378-5173(93)90222-2.

    Article  CAS  Google Scholar 

  12. Mercuri A. A physico-chemical investigation into the factors affecting the behaviour of self-emulsifying drug delivery systems. 2009.

  13. Nazzal S, Smalyukh I, Lavrentovich O, Khan MA. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: mechanism and progress of emulsion formation. Int J Pharm. 2002;235(1–2):247–65. doi:10.1016/S0378-5173(02)00003-0.

    Article  CAS  PubMed  Google Scholar 

  14. Craig DQM, Barker SA, Banning D, Booth SW. An investigation into the mechanisms of self-emulsification using particle size analysis and low frequency dielectric spectroscopy. Int J Pharm. 1995;114(1):103–10. doi:10.1016/0378-5173(94)00222-Q.

    Article  CAS  Google Scholar 

  15. Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: an approach to enhance oral bioavailability. Drug Discov Today. 2010;15(21–22):958–65. doi:10.1016/j.drudis.2010.08.007.

    Article  CAS  PubMed  Google Scholar 

  16. Zanchetta B, Vinicius Chaud M, Andrade Santana MH. Self-emulsifying drug delivery systems (SEDDS) in pharmaceutical development. J Adv Chem Eng. 2015;5(3) doi:10.4172/2090-4568.1000130.

  17. D’Errico G, Ciccarelli D, Ortona O. Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25 degrees C. J Colloid Interface Sci. 2005;286(2):747–54. doi:10.1016/j.jcis.2005.01.030.

    Article  PubMed  Google Scholar 

  18. Cantù L, Corti M, Degiorgio V, Hoffmann H, Ulbricht W. Nonionic micelles in mixed water-glycerol solvent. J Colloid Interface Sci. 1987;116(2):384–9. doi:10.1016/0021-9797(87)90134-2.

    Article  Google Scholar 

  19. Patel H, Raval G, Nazari M, Heerklotz H. Effects of glycerol and urea on micellization, membrane partitioning and solubilization by a non-ionic surfactant. Biophys Chem. 2010;150(1–3):119–28. doi:10.1016/j.bpc.2010.03.015.

    Article  CAS  PubMed  Google Scholar 

  20. Aramaki K, Olsson U, Yamaguchi Y, Kunieda H. Effect of water-soluble alcohols on surfactant aggregation in the C12EO8 system. Langmuir. 1999;16:6226–32. http://pubs.acs.org/doi/abs/10.1021/la9900573

    Article  Google Scholar 

  21. Prajapati K, Patel S. Micellization of surfactants in mixed solvent of different polarity. Arch Appl Sci Res. 2012;4(1):662–8.

    CAS  Google Scholar 

  22. Aratono M, Takiue T. Miscibility in binary mixtures of surfactants. Mix Surfactant Syst. 2005; doi:10.1201/9781420031010.ch1.

    Google Scholar 

  23. Glycerine Producers Association. Physical Properties of Glycerine and Its Solutions.; 1963.

  24. De Campo L, Yaghmur A, Garti N, Leser ME, Folmer B, Glatter O. Five-component food-grade microemulsions: structural characterization by SANS. J Colloid Interface Sci. 2004;274(1):251–67. doi:10.1016/j.jcis.2004.02.027.

  25. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58(3):173–82. doi:10.1016/j.biopha.2004.02.001.

    Article  PubMed  Google Scholar 

  26. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30. doi:10.1023/B:PHAM.0000016235.32639.23.

    Article  CAS  PubMed  Google Scholar 

  27. Floyd AG. Top ten considerations in the development of parenteral emulsions. Pharm Sci Technol Today. 1999;2(4):134–43. doi:10.1016/S1461-5347(99)00141-8.

    Article  CAS  Google Scholar 

  28. Date AA, Nagarsenker MS. Parenteral microemulsions: an overview. Int J Pharm. 2008;355(1–2):19–30. doi:10.1016/j.ijpharm.2008.01.004.

    Article  CAS  PubMed  Google Scholar 

  29. Thevenin MA, Grossiord JL, Poelman MC. Sucrose esters/cosurfactant microemulsion systems for transdermal delivery: assessment of bicontinuous structures. Int J Pharm. 1996;137(2):177–86. doi:10.1016/0378-5173(96)04518-8.

    Article  CAS  Google Scholar 

  30. García-Celma MJ, Azemar N, Pes MA, Solans C. Solubilization of antifungal drugs in water/POE(20) sorbitan monooleate/oil systems. Int J Pharm. 1994;105(1):77–81. doi:10.1016/0378-5173(94)90238-0.

    Article  Google Scholar 

  31. Linn EE, Pohland RC, Byrd TK. Microemulsion for intradermal delivery of cetyl alcohol and octyl dimethyl PABA. Drug Dev Ind Pharm. 1990;16(6):899–920. doi:10.3109/03639049009114917.

  32. Glycerol concentration study. Suppl Mater. 1.

  33. Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J Phys Chem B. 2006;110(27):13670–7. doi:10.1021/jp0618680.

    Article  CAS  PubMed  Google Scholar 

  34. Song B, Springer J. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing 2. Experimental. J Colloid Interface Sci. 1996;184:77–91. doi:10.1016/S0021-9797(96)90598-6.

    CAS  PubMed  Google Scholar 

  35. Pusey PN, van Megen W. Phase behaviour of concentrated suspensions of nearly colloidal spheres. Nature. 1986;319(30):402–3.

    Google Scholar 

  36. Limpert E, Stahel WA, Abbt M. Log normal distributions across the science keys and clues. Bioscience 2001. 2001;51(5):341–52. doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.

    Google Scholar 

  37. Cheng Z, Redner S. Kinetics of fragmentation. J Phys A Math Gen. 1990;23:1233–58.

    Article  Google Scholar 

  38. Glatter VO, Kratky O. In: Glatter VO, Kratky O, editors. Small angle X-ray scattering. London: Academic Press Inc. Ltd.; 1982.

    Google Scholar 

  39. Model drug study. Suppl Mater. 2.

  40. Hyde ST. Identification of lyotropic liquid crystalline mesophases. Handb Appl Surf Colloid Chem. 2001:299–332.

  41. De Gennes PG, Taupin C. Microemulsions and the flexibility of oil/water interfaces. J Phys Chem. 1982;86(13):2294–304. doi:10.1021/j100210a011.

    Article  CAS  Google Scholar 

  42. Cabane B, Hénon S. Liquides: solutions, dispersions, emulsions, Gels. Belin. Paris; 2007.

  43. Select Committee on GRAS Substances. Select committee on GRAS substances (SCOGS) opinion: glycerin and glycerides.

  44. Bahloul B, Lassoued MA, Sfar S. A novel approach for the development and optimization of self emulsifying drug delivery system using HLB and response surface methodology: application to fenofibrate encapsulation. Int J Pharm. 2014;466(1–2):341–8. doi:10.1016/j.ijpharm.2014.03.040.

    Article  CAS  PubMed  Google Scholar 

  45. Osipow LI. Transparent emulsions. J Soc Cosmet Chem. 1963;14:277–86.

    CAS  Google Scholar 

  46. Singhal S, Moser CC, Wheatley MA. Surfactant-stabilized microbubbles as ultrasound contrast agents: stability study of Span-60 and Tween-80 mixtures using a Langmuir trough. Langmuir. 1993;9(7):2426–9. doi:10.1021/la00033a027.

  47. Seul M, Andelman D. Domain shapes and patterns: the phenomenology of modulated phases. Science. 1995;267(5197):476–83. doi:10.1126/science.267.5197.476.

    Article  CAS  PubMed  Google Scholar 

  48. Israelachvili J. Intermolecular Ans Surface Forces. Third Edit. (Elsevier, ed.).; 2011.

  49. Bergström M, Pedersen JS, Schurtenberger P, Egelhaaf S. Small-angle neutron scattering (SANS) study of vesicles and lamellar sheets formed from mixtures of an anionic and a cationic surfactant. J Phys Chem B. 1999;103(45):9888–97. doi:10.1021/jp991846w.

    Article  Google Scholar 

  50. Iwanaga T, Suzuki M, Kunieda H. Effect of added salts or polyols on the liquid crystalline structures of polyoxyethylene-type nonionic surfactants. Langmuir. 1998;14(20):5775–81. doi:10.1021/la980315g.

    Article  CAS  Google Scholar 

  51. Lin Y, Alexandridis P. Temperature-dependent adsorption of Pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media temperature-dependent adsorption of Pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J Phys Chem B. 2002;106:10834–44. doi:10.1021/jp014221i.

    Article  CAS  Google Scholar 

  52. Liu T, Guo R. Structure and transformation of the niosome prepared from PEG 6000/Tween 80/Span 80/H2O lamellar liquid crystal. Colloids Surfaces A Physicochem Eng Asp. 2007;295(1–3):130–4. doi:10.1016/j.colsurfa.2006.08.041.

    Article  CAS  Google Scholar 

  53. EFN BW. Molecular self organization of amphiphiles. J Phys Chem. 1986;90(2):226–34. doi:10.1021/j100274a005.

    Article  Google Scholar 

  54. Yan Y, Hoffmann H, Makarsky A, Richter W, Talmon Y. Swelling of L r-phases by matching the refractive index of the water-glycerol mixed solvent and that of the bilayers in the block copolymer system of. 2007;111:6374–6382.

  55. Song A, Reizlein K, Hoffmann H. Swelling of aqueous L α-phases by matching the refractive index of the bilayers with that of the mixed solvent. Prog Colloid Polym Sci. 2008;111–119.

  56. Pincus P, Joanny J-F, Andelman D. Electrostatic interactions, curvature elasticity, and steric repulsion in multimembrane systems. Europhys Lett. 2007;11(8):763–8. doi:10.1209/0295-5075/11/8/012.

    Article  Google Scholar 

  57. Williams HD, Sassene P, Kleberg K, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations. J Pharm Sci. 2012;101(9):3360–80. doi:10.1002/jps.23205.

    Article  CAS  PubMed  Google Scholar 

  58. Williams HD, Anby MU, Sassene P, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. 2012.

  59. Williams HD, Sassene P, Kleberg K, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 4: proposing a new lipid formulation performance classification system. J Pharm Sci. 2014;103(8):2441–55. doi:10.1002/jps.24067.

    Article  CAS  PubMed  Google Scholar 

  60. Williams HD, Sassene P, Kleberg K, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30(12):3059–76. doi:10.1007/s11095-013-1038-z.

    Article  CAS  PubMed  Google Scholar 

  61. Sassene P, Kleberg K, Williams HD, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 6: effects of varying pancreatin and calcium levels. AAPS J. 2014;16(6):1344–57. doi:10.1208/s12248-014-9672-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bakala-N’Goma JC, Williams HD, Sassene PJ, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. Lipolysis of representative formulations by gastric lipase. Pharm Res. 2015;32(4):1279–87. doi:10.1007/s11095-014-1532-y.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

CP, AM, and LA are thankful to RCPE for their financial support and to Prof. Andreas Zimmer for the use of the Zetasizer. The technical support by Reingard Sattler, Mario Hainschitz, and Philip Pernitsch is gratefully acknowledged. CP thanks Günter Brenn for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript

Corresponding author

Correspondence to Carole Planchette.

Electronic Supplementary Material

ESM 1

(DOCX 2379 kb)

ESM 2

(DOCX 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planchette, C., Mercuri, A., Arcangeli, L. et al. Self-emulsification of Lipidic Drug Delivery System in Pure Water and in Concentrated Glycerol Solution. AAPS PharmSciTech 18, 3053–3063 (2017). https://doi.org/10.1208/s12249-017-0785-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0785-2

KEY WORDS

Navigation