Skip to main content
Log in

Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We assessed the functionality of sucrose esters (sucrose laurate, myristate, palmitate, and stearate), relatively innocuous nonionic surfactants, in formulation of biocompatible microemulsions. The putative influence of surfactant structure on the extension of microemulsion region was explored through the construction of the pseudo-ternary phase diagrams for the isopropyl myristate/sucrose ester-isopropyl alcohol/water system, using the titration method and mixture experimental approach. Minor changes in surfactant tail length strongly affected the microemulsion area boundaries. D-optimal mixture design proved to be highly applicable in detecting the microemulsion regions. Examination of conductivity, rheology, and thermal behavior of the selected sucrose laurate and sucrose myristate-based microemulsions, upon dilution with water, indicated existence of percolation threshold and suggested the phase inversion from water-in-oil to oil-in-water via a bicontinuous structure. Atomic force micrographs confirmed the suggested type of microemulsions and were valuable in further exploring their inner structure. The solubilization capacity of aceclofenac as a model drug has decreased as the water volume fraction in microemulsion increased. High surfactant concentration and the measured solubility of aceclofenac in microemulsion components suggested that the interfacial film may mostly contribute to aceclofenac solubilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klang V, Matsko N, Zimmermann AM, Vojnikovic E, Valenta C (2010) Enhancement of stability and skin permeation by sucrose stearate and cyclodextrins in progesterone nanoemulsions. Int J Pharm 393:152–160

    Article  CAS  Google Scholar 

  2. Ullrich S, Metz H, Mäder K (2008) Sucrose ester nanodispersions: microviscosity and viscoelastic properties. Eur J Pharm Biopharm 70:550–555

    Article  CAS  Google Scholar 

  3. Schwarz JC, Klang V, Hoppel M, Mahrhauser D, Valenta C (2012) Natural microemulsions: formulation design and skin interaction. Eur J Pharm Biopharm 81:557–562

    Article  CAS  Google Scholar 

  4. Kürti L, Veszelka S, Bocsik A, Dung NT, Ozsvári B, Puskás LG, Kittel A, Szabó-Révész P, Deli MA (2012) The effect of sucrose esters on a culture model of the nasal barrier. Toxicol In Vitro 26:445–454

    Article  Google Scholar 

  5. Szűts A, Szabó-Révész P (2012) Sucrose esters as natural surfactants in drug delivery systems—a mini-review. Int J Pharm 433:1–9

    Article  Google Scholar 

  6. Sahle FF, Metz H, Wohlrab J, Neubert RH (2013) Lecithin-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterizations, and in vitro release and penetration studies. Pharm Res 30:538–551

    Article  CAS  Google Scholar 

  7. Tirnaksiz F, Kayiş A, Çelebi N, Adişen E, Erel A (2012) Preparation and evaluation of topical microemulsion system containing metronidazole for remission in Rosacea. Chem Pharm Bull 60:583–592

    CAS  Google Scholar 

  8. Bolzinger-Thevenin MA, Grossiord JL, Poelman MC (1999) Characterization of a sucrose ester microemulsion by freeze fracture electron micrograph and small angle neutron scattering experiments. Langmuir 15:2307–2315

    Article  CAS  Google Scholar 

  9. Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB (2006) Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech 7:E45

    Article  Google Scholar 

  10. Alany RG, Tucker IG, Davies NM, Rades T (2001) Characterizing colloidal structures of pseudoternary phase diagrams formed by oil/water/amphiphile systems. Drug Dev Ind Pharm 27:31–38

    Article  CAS  Google Scholar 

  11. Klang V, Valenta C, Matsko NB (2013) Electron microscopy of pharmaceutical systems. Micron 44:45–74

    Article  CAS  Google Scholar 

  12. Krauel K, Girvan L, Hook S, Rades T (2007) Characterisation of colloidal drug delivery systems from the naked eye to Cryo-FESEM. Micron 38:796–803

    Article  CAS  Google Scholar 

  13. Kang BK, Chon SK, Kim SH, Jeong SY, Kim MS, Cho SH, Lee HB, Khang G (2004) Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int J Pharm 286:147–156

    Article  CAS  Google Scholar 

  14. Fanun M, Papadimitriou V, Xenakis A (2011) Characterization of cephalexin loaded nonionic microemulsions. J Colloid Interface Sci 361:115–121

    Article  CAS  Google Scholar 

  15. Gaur PK, Mishra S, Aeri V (2014) Formulation and evaluation of Guggul lipid nanovesicles for transdermal delivery of aceclofenac. Sci World J 2014:534210

    Article  Google Scholar 

  16. Lee J, Lee Y, Kim J, Yoon M, Choi YW (2005) Formulation of microemulsion systems for transdermal delivery of aceclofenac. Arch Pharm Res 28:1097–1102

    Article  CAS  Google Scholar 

  17. Shakeel F, Baboota S, Ahuja A, All J, Shafiq S (2008) Skin permeation mechanism of aceclofenac using novel nanoemulsion formulation. Pharmazie 63:580–584

    CAS  Google Scholar 

  18. Fanun M (2009) Oil type effect on diclofenac solubilization in mixed nonionic surfactants microemulsions. Colloid Surf A: Physicochem Eng Aspects 343:75–82

    Article  CAS  Google Scholar 

  19. Podlogar F, Gašperlin M, Tomšič M, Jamnik A, Bešter Rogač M (2004) Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods. Int J Pharm 276:115–128

    Article  CAS  Google Scholar 

  20. Santana RC, Fasolin LH, da Cunha RL (2012) Effects of a cosurfactant on the shear-dependent structures of systems composed of biocompatible ingredients. Colloid Surf A: Physicochem Eng Aspects 398:54–63

    Article  Google Scholar 

  21. Wan T, Hu ZW, Ma XL, Yao J, Lu K (2008) Synthesis of silane monomer-modified styrene–acrylate microemulsion coatings by photopolymerization. Prog Organ Coat 62:219–225

    Article  CAS  Google Scholar 

  22. Akalin Ö, Akay KU, Sennaroglu B, Tez M (2010) Optimization of chemical admixture for concrete on mortar performance tests using mixture experiments. Chemom Intell Lab Syst 104:233–242

    Article  CAS  Google Scholar 

  23. Design-Expert 7.0.0 User’s Guide, (2005) Stat-Ease, Inc., Minneapolis, MN, USA

  24. Jeirani Z, Jan BM, Ali BS, Noor IM, Hwa SC, Saphanuchart W (2012) The optimal mixture design of experiments: alternative method in optimizing the aqueous phase composition of a microemulsion. Chemom Intell Lab Syst 112:1–7

    Article  CAS  Google Scholar 

  25. Furlanetto S, Cirri M, Piepel G, Mennini N, Mura P (2011) Mixture experiment methods in the development and optimization of microemulsion formulations. J Pharm Biomed Anal 55:610–617

    Article  CAS  Google Scholar 

  26. Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK (2012) Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech 13:184–192

    Article  CAS  Google Scholar 

  27. Fisher S, Wachtel EJ, Aserin A, Garti N (2013) Solubilization of simvastatin and phytosterols in a dilutable microemulsion system. Colloid Surf B Biointerfaces 107:35–42

    Article  CAS  Google Scholar 

  28. Garti N, Aserin A, Tiunova I, Fanun M (2000) A DSC study of water behavior in water-in-oil microemulsions stabilized by sucrose esters and butanol. Colloid Surf A: Physicochem Eng Aspects 170:1–18

    Article  CAS  Google Scholar 

  29. Bardhan S, Kundu K, Saha SK, Paul BK (2013) Physicochemical studies of mixed surfactant microemulsions with isopropyl myristate as oil. J Colloid Interface Sci 402:180–189

    Article  CAS  Google Scholar 

  30. Mehta SK, Kaur G, Mutneja R, Bhasin KK (2009) Solubilization, microstructure, and thermodynamics of fully dilutable U-type Brij microemulsion. J Colloid Interface Sci 338:542–549

    Article  CAS  Google Scholar 

  31. Fanun M (2008) Surfactant chain length effect on the structural parameters of nonionic microemulsions. J Disp Sci Techn 29:289–296

    Article  CAS  Google Scholar 

  32. Fanun M (2008) Phase behavior, transport, diffusion and structural parameters of nonionic surfactants microemulsions. J Mol Liq 139:14–22

    Article  CAS  Google Scholar 

  33. Alany RG, Agatonovic-Kustrin S, Rades T, Tucker IG (1999) Use of artificial neural networks to predict quaternery phase systems from limited experimental data. J Pharm Biomed Anal 19:443–452

    Article  CAS  Google Scholar 

  34. Djekic L, Ibric S, Primorac M (2008) The application of artificial neural networks in the prediction of microemulsion phase boundaries in PEG-8 caprylic/capric glycerides based systems. Int J Pharm 361:41–46

    Article  CAS  Google Scholar 

  35. Richardson CJ, Mbanefo A, Aboofazeli R, Lawrence MJ, Barlow DJ (1997) Prediction of phase behavior in microemulsion systems using artificial neural networks. J Colloid Interface Sci 187:296–303

    Article  CAS  Google Scholar 

  36. Miguélez-Morán A-M (2009) Roller compaction of pharmaceutical ingredients: on the understanding of the compaction and the use of knowledge based applications in the formulation of tablets. Dissertation, University of Heidelberg, Germany

  37. Wesolowski M, Suchacz B (2012) Artificial neural networks: theoretical background and pharmaceutical applications: a review. J AOAC Int 95:652–668

    Article  CAS  Google Scholar 

  38. Mehta SK, Bala K (1995) Volumetric and transport properties in microemulsions and the point of view of percolation theory. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51:5732–5737

    CAS  Google Scholar 

  39. Borkovec M, Eicke HF, Hammerich H, Das Gupta B (1988) Two percolation processes in microemulsions. J Phys Chem 92:206–211

    Article  CAS  Google Scholar 

  40. Chakraborty I, Moulik SP (2005) Physicochemical studies on microemulsions 9. Conductance percolation of AOT-derived W/O microemulsion with aliphatic and aromatic hydrocarbon oils. J Colloid Interface Sci 289:530–541

    Article  CAS  Google Scholar 

  41. Jeirani Z, Jan BM, Ali BS, Noor IM, Hwa SC, Saphanuchart W (2012) Prediction of water percolation threshold of a microemulsion using electrical conductivity measurements and design of experiments. Ind Eng Chem Res 51:10147–10155

    Article  CAS  Google Scholar 

  42. Mehta SK, Kaur G (2011) Microemulsions: thermodynamic and dynamic properties. In: Tadashi M (ed) Thermodynamics. In Tech, Rijeka, pp 381–406

    Google Scholar 

  43. Podlogar F, Bešter Rogač M, Gašperlin M (2005) The effect of internal structure of selected water-Tween 40-Imwitor 308-IPM microemulsions on ketoprofene release. Int J Pharm 302:68–77

    Article  CAS  Google Scholar 

  44. Mitra RK, Paul BK (2005) Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT + Brij-35) and butanol. J Colloid Interface Sci 283:565–577

    Article  CAS  Google Scholar 

  45. Fanun M (2007) Conductivity, viscosity, NMR and diclofenac solubilization capacity studies of mixed nonionic surfactants microemulsions. J Mol Liq 135:5–13

    Article  CAS  Google Scholar 

  46. Fanun M (2010) Solubilization of celecoxib in microemulsions based on mixed nonionic surfactants and peppermint oil. J Disp Sci Techn 31:1140–1149

    Article  CAS  Google Scholar 

  47. Yaghmur A, Aserin A, Tiunova I, Garti N (2002) Sub-zero temperature behaviour of non-ionic microemulsions in the presence of propylene glycol by DSC. J Thermal Anal Calorim 69:163–177

    Article  CAS  Google Scholar 

  48. Bardhan S, Kundu K, Paul BK, Saha SK (2013) Interfacial composition and characterization of a quaternary water-in-oil mixed surfactant (cationic of different alkyl chain lengths + polyoxyethylene type nonionic) microemulsions in absence and presence of inorganic salts. Colloid Surf A: Physicochem Eng Aspects 433:219–229

    Article  CAS  Google Scholar 

  49. Djekić L, Primorac M, Filipić S, Agbaba D (2012) Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions. Int J Pharm 433:25–33

    Article  Google Scholar 

  50. Lawrence MJ, Rees GD (2012) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 64:175–193

    Article  Google Scholar 

  51. Bolzinger MA, Carduner T, Poelman MC (1998) Bicontinuous sucrose ester microemulsion: a new vehicle for topical delivery of niflumic acid. I J Pharm 176:39–45

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Ministry of Education, Science and Technological Development, Republic of Serbia, through Project TR34031 and TR32008. The authors are grateful to Mitsubishi-Kagaku Foods Corporation for supplying sucrose esters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana D. Savić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 376 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todosijević, M.N., Cekić, N.D., Savić, M.M. et al. Sucrose ester-based biocompatible microemulsions as vehicles for aceclofenac as a model drug: formulation approach using D-optimal mixture design. Colloid Polym Sci 292, 3061–3076 (2014). https://doi.org/10.1007/s00396-014-3351-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3351-4

Keywords

Navigation