The AAPS Journal

, Volume 15, Issue 4, pp 951–961

Phytochemicals from Cruciferous Vegetables, Epigenetics, and Prostate Cancer Prevention

  • Gregory W. Watson
  • Laura M. Beaver
  • David E. Williams
  • Roderick H. Dashwood
  • Emily Ho
Review Article Theme: Natural Products Drug Discovery in Cancer Prevention

Abstract

Epidemiological evidence has demonstrated a reduced risk of prostate cancer associated with cruciferous vegetable intake. Follow-up studies have attributed this protective activity to the metabolic products of glucosinolates, a class of secondary metabolites produced by crucifers. The metabolic products of glucoraphanin and glucobrassicin, sulforaphane, and indole-3-carbinol respectively, have been the subject of intense investigation by cancer researchers. Sulforaphane and indole-3-carbinol inhibit prostate cancer by both blocking initiation and suppressing prostate cancer progression in vitro and in vivo. Research has largely focused on the anti-initiation and cytoprotective effects of sulforaphane and indole-3-carbinol through induction of phases I and II detoxification pathways. With regards to suppressive activity, research has focused on the ability of sulforaphane and indole-3-carbinol to antagonize cell signaling pathways known to be dysregulated in prostate cancer. Recent investigations have characterized the ability of sulforaphane and indole-3-carbinol derivatives to modulate the activity of enzymes controlling the epigenetic status of prostate cancer cells. In this review, we will summarize the well-established, “classic” non-epigenetic targets of sulforaphane and indole-3-carbinol, and highlight more recent evidence supporting these phytochemicals as epigenetic modulators for prostate cancer chemoprevention.

KEY WORDS

epigenetic I3C prostate cancer sulforaphane 

REFERENCES

  1. 1.
    Richman EL, Carroll PR, Chan JM. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer. 2011;131(1):201–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu B, Mao Q, Cao M, Xie L. Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol. 2012;19(2):134–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Steinbrecher A, Nimptsch K, Husing A, Rohrmann S, Linseisen J. Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Int J Cancer. 2009;125(9):2179–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Altekruse SF, et al., editors. SEER Cancer Statistics Review, 1975–2009 (Vintage 2009 Populations). 2012.Google Scholar
  5. 5.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 (Internet). International Agency for Research on Cancer. 2010. Available from: http://globocan.iarc.fr. Accessed 12/11/2012
  6. 6.
    Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer. 1991;63(6):963–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee J, Demissie K, Lu SE, Rhoads GG. Cancer incidence among Korean-American immigrants in the United States and native Koreans in South Korea. Cancer Control. 2007;14(1):78–85.PubMedGoogle Scholar
  8. 8.
    IARC. IARC: cruciferous vegetables, isothiocyanates and indoles, vol. 9. Lyon: IARC; 2004.Google Scholar
  9. 9.
    McNaughton SA, Marks GC. Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr. 2003;90(3):687–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Hanlon N, Coldham N, Gielbert A, Sauer MJ, Ioannides C. Repeated intake of broccoli does not lead to higher plasma levels of sulforaphane in human volunteers. Cancer Lett. 2009;284(1):15–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Hauder J, Winkler S, Bub A, Rufer CE, Pignitter M, Somoza V. LC-MS/MS quantification of sulforaphane and indole-3-carbinol metabolites in human plasma and urine after dietary intake of selenium-fortified broccoli. J Agric Food Chem. 2011;59(15):8047–57.PubMedCrossRefGoogle Scholar
  12. 12.
    Veeranki OL, Bhattacharya A, Marshall JR, Zhang Y. Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention. Br J Nutr. 2012;2:1–8.Google Scholar
  13. 13.
    Clarke JD, Hsu A, Williams DE, Dashwood RH, Stevens JF, Yamamoto M, et al. Metabolism and tissue distribution of sulforaphane in Nrf2 knockout and wild-type mice. Pharm Res. 2011;28(12):3171–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Keum YS, Khor TO, Lin W, Shen G, Kwon KH, Barve A, et al. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res. 2009;26(10):2324–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Traka MH, Spinks CA, Doleman JF, Melchini A, Ball RY, Mills RD, et al. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer. Mol Cancer. 2010;9:189.PubMedCrossRefGoogle Scholar
  16. 16.
    Traka M, Gasper AV, Melchini A, Bacon JR, Needs PW, Frost V, et al. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One. 2008;3(7):e2568.PubMedCrossRefGoogle Scholar
  17. 17.
    Grose KR, Bjeldanes LF. Oligomerization of indole-3-carbinol in aqueous acid. Chem Res Toxicol. 1992;5(2):188–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Anderton MJ, Manson MM, Verschoyle RD, Gescher A, Lamb JH, Farmer PB, et al. Pharmacokinetics and tissue disposition of indole-3-carbinol and its acid condensation products after oral administration to mice. Clin Cancer Res. 2004;10(15):5233–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Reed GA, Arneson DW, Putnam WC, Smith HJ, Gray JC, Sullivan DK, et al. Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3′-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Souli E, Machluf M, Morgenstern A, Sabo E, Yannai S. Indole-3-carbinol (I3C) exhibits inhibitory and preventive effects on prostate tumors in mice. Food Chem Toxicol. 2008;46(3):863–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Bradlow HL, Zeligs MA. Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In Vivo (Athens, Greece). 2010;24(4):387–91.Google Scholar
  22. 22.
    Bradlow HL. Review. Indole-3-carbinol as a chemoprotective agent in breast and prostate cancer. In Vivo (Athens, Greece). 2008;22(4):441–5.Google Scholar
  23. 23.
    Cho HJ, Park SY, Kim EJ, Kim JK, Park JH. 3,3′-diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol Carcinog. 2011;50(2):100–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, et al. Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr. 2005;82(6):1283–91.PubMedGoogle Scholar
  25. 25.
    Heath EI, Heilbrun LK, Li J, Vaishampayan U, Harper F, Pemberton P, et al. A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′-diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Trans Res. 2010;2(4):402–11.Google Scholar
  26. 26.
    Brooks JD, Paton VG, Vidanes G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev. 2001;10(9):949–54.PubMedGoogle Scholar
  27. 27.
    Fahey JW, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem Toxicol. 1999;37(9-10):973–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Guerrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012;64(5):503–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang TT, Schoene NW, Milner JA, Kim YS. Broccoli-derived phytochemicals indole-3-carbinol and 3,3′-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: comparison with other cancer preventive phytochemicals. Mol Carcinog. 2012;51(3):244–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Ernst IM, Schuemann C, Wagner AE, Rimbach G. 3,3′-diindolylmethane but not indole-3-carbinol activates Nrf2 and induces Nrf2 target gene expression in cultured murine fibroblasts. Free Radic Res. 2011;45(8):941–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Saw CL, Cintron M, Wu TY, Guo Y, Huang Y, Jeong WS, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos. 2011;32(5):289–300.PubMedCrossRefGoogle Scholar
  32. 32.
    Reed GA, Peterson KS, Smith HJ, Gray JC, Sullivan DK, Mayo MS, et al. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1953–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Dalessandri KM, Firestone GL, Fitch MD, Bradlow HL, Bjeldanes LF. Pilot study: effect of 3,3′-diindolylmethane supplements on urinary hormone metabolites in postmenopausal women with a history of early-stage breast cancer. Nutr Cancer. 2004;50(2):161–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Michnovicz JJ, Adlercreutz H, Bradlow HL. Changes in levels of urinary estrogen metabolites after oral indole-3-carbinol treatment in humans. J Natl Cancer Inst. 1997;89(10):718–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Michnovicz JJ, Bradlow HL. Altered estrogen metabolism and excretion in humans following consumption of indole-3-carbinol. Nutr Cancer. 1991;16(1):59–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Fowke JH, Longcope C, Hebert JR. Brassica vegetable consumption shifts estrogen metabolism in healthy postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2000;9(8):773–9.PubMedGoogle Scholar
  37. 37.
    Castagnetta LA, Miceli MD, Sorci CM, Pfeffer U, Farruggio R, Oliveri G, et al. Growth of LNCaP human prostate cancer cells is stimulated by estradiol via its own receptor. Endocrinology. 1995;136(5):2309–19.PubMedCrossRefGoogle Scholar
  38. 38.
    Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106(1):268–73.PubMedCrossRefGoogle Scholar
  39. 39.
    Majumder PK, Sellers WR. Akt-regulated pathways in prostate cancer. Oncogene. 2005;24(50):7465–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Sarker D, Reid AH, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res. 2009;15(15):4799–805.PubMedCrossRefGoogle Scholar
  41. 41.
    Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Investig. 2008;118(9):3051–64.PubMedGoogle Scholar
  42. 42.
    Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets. 2009;9(2):237–49.PubMedCrossRefGoogle Scholar
  43. 43.
    Wiczk A, Hofman D, Konopa G, Herman-Antosiewicz A. Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. Biochim Biophys Acta. 2012;1823(8):1295–305.PubMedCrossRefGoogle Scholar
  44. 44.
    Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, et al. The emerging multiple roles of nuclear Akt. Biochim Biophys Acta. 2012;1823(12):2168–78.PubMedCrossRefGoogle Scholar
  45. 45.
    Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu C, Shen G, Chen C, Gelinas C, Kong AN. Suppression of NF-kappaB and NF-kappaB-regulated gene expression by sulforaphane and PEITC through IkappaBalpha, IKK pathway in human prostate cancer PC-3 cells. Oncogene. 2005;24(28):4486–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997;11(6):701–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, et al. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis. 2006;27(3):437–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Choi S, Lew KL, Xiao H, Herman-Antosiewicz A, Xiao D, Brown CK, et al. d,l-sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis. 2007;28(1):151–62.PubMedCrossRefGoogle Scholar
  50. 50.
    Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS. Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev. 2008;22(11):1490–500.PubMedCrossRefGoogle Scholar
  51. 51.
    Choi S, Singh SV. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res. 2005;65(5):2035–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A. 1997;94(19):10057–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 1998;188(1):211–6.PubMedCrossRefGoogle Scholar
  54. 54.
    McEleny K, Coffey R, Morrissey C, Williamson K, Zangemeister-Wittke U, Fitzpatrick JM, et al. An antisense oligonucleotide to cIAP-1 sensitizes prostate cancer cells to fas and TNFalpha mediated apoptosis. Prostate. 2004;59(4):419–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Xiao D, Powolny AA, Antosiewicz J, Hahm ER, Bommareddy A, Zeng Y, et al. Cellular responses to cancer chemopreventive agent d,l-sulforaphane in human prostate cancer cells are initiated by mitochondrial reactive oxygen species. Pharm Res. 2009;26(7):1729–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Singh AV, Xiao D, Lew KL, Dhir R, Singh SV. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004;25(1):83–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Singh SV, Warin R, Xiao D, Powolny AA, Stan SD, Arlotti JA, et al. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res. 2009;69(5):2117–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008;269(2):291–304.PubMedCrossRefGoogle Scholar
  59. 59.
    Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007;64(9):1105–27.PubMedCrossRefGoogle Scholar
  60. 60.
    Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene. 2001;20(23):2927–36.PubMedCrossRefGoogle Scholar
  61. 61.
    Nachshon-Kedmi M, Yannai S, Haj A, Fares FA. Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol. 2003;41(6):745–52.PubMedCrossRefGoogle Scholar
  62. 62.
    Vivar OI, Lin CL, Firestone GL, Bjeldanes LF. 3,3′-diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 status. Biochem Pharmacol. 2009;78(5):469–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Nachshon-Kedmi M, Yannai S, Fares FA. Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3′-diindolylmethane through the mitochondrial pathway. Br J Cancer. 2004;91(7):1358–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Garikapaty VP, Ashok BT, Tadi K, Mittelman A, Tiwari RK. 3,3′-diindolylmethane downregulates pro-survival pathway in hormone independent prostate cancer. Biochem Biophys Res Commun. 2006;340(2):718–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Bhuiyan MM, Li Y, Banerjee S, Ahmed F, Wang Z, Ali S, et al. Down-regulation of androgen receptor by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res. 2006;66(20):10064–72.PubMedCrossRefGoogle Scholar
  66. 66.
    Kong D, Banerjee S, Huang W, Li Y, Wang Z, Kim HR, et al. Mammalian target of rapamycin repression by 3,3′-diindolylmethane inhibits invasion and angiogenesis in platelet-derived growth factor-d-overexpressing PC3 cells. Cancer Res. 2008;68(6):1927–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH. Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res. 2007;67(7):3310–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Li Y, Chinni SR, Sarkar FH. Selective growth regulatory and pro-apoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci. 2005;10:236–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen D, Banerjee S, Cui QC, Kong D, Sarkar FH, Dou QP. Activation of AMP-activated protein kinase by 3,3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One. 2012;7(10):e47186.PubMedCrossRefGoogle Scholar
  70. 70.
    Le HT, Schaldach CM, Firestone GL, Bjeldanes LF. Plant-derived 3,3′-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem. 2003;278(23):21136–45.PubMedCrossRefGoogle Scholar
  71. 71.
    Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev. 2011;11(10):726–34.CrossRefGoogle Scholar
  72. 72.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim HJ, Bae SC. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3(2):166–79.PubMedGoogle Scholar
  74. 74.
    Dashwood RH, Myzak MC, Ho E. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis. 2006;27(2):344–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Weichert W, Roske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer. 2008;98(3):604–10.PubMedCrossRefGoogle Scholar
  76. 76.
    Gibbs A, Schwartzman J, Deng V, Alumkal J. Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci U S A. 2009;106(39):16663–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, et al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28(14):1714–24.PubMedCrossRefGoogle Scholar
  78. 78.
    Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis. 2006;27(4):811–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E. Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood, NJ). 2007;232(2):227–34.Google Scholar
  80. 80.
    Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res. 2011;55(7):999–1009.PubMedCrossRefGoogle Scholar
  81. 81.
    Hsu A, Wong CP, Yu Z, Williams DE, Dashwood RH, Ho E. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics. 2011;3:3.PubMedCrossRefGoogle Scholar
  82. 82.
    Padar A, Sathyanarayana UG, Suzuki M, Maruyama R, Hsieh JT, Frenkel EP, et al. Inactivation of cyclin D2 gene in prostate cancers by aberrant promoter methylation. Clin Cancer Res. 2003;9(13):4730–4.PubMedGoogle Scholar
  83. 83.
    Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5(7):e11457.PubMedCrossRefGoogle Scholar
  84. 84.
    Valenzuela-Fernandez A, Cabrero JR, Serrador JM, Sanchez-Madrid F. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18(6):291–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Azarenko O, Okouneva T, Singletary KW, Jordan MA, Wilson L. Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane. Carcinogenesis. 2008;29(12):2360–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, et al. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem. 2008;283(32):22136–46.PubMedCrossRefGoogle Scholar
  87. 87.
    Xiao Z, Mi L, Chung FL, Veenstra TD. Proteomic analysis of covalent modifications of tubulins by isothiocyanates. J Nutr. 2012;142(7):1377S–81S.PubMedCrossRefGoogle Scholar
  88. 88.
    Shankar S, Ganapathy S, Srivastava RK. Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis. Clin Cancer Res. 2008;14(21):6855–66.PubMedCrossRefGoogle Scholar
  89. 89.
    Ai J, Wang Y, Dar JA, Liu J, Liu L, Nelson JB, et al. HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol (Baltimore, Md). 2009;23(12):1963–72.CrossRefGoogle Scholar
  90. 90.
    Beaver LM, Yu TW, Sokolowski EI, Williams DE, Dashwood RH, Ho E. 3,3′-diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol. 2012;263(3):345–51.PubMedCrossRefGoogle Scholar
  91. 91.
    Li Y, Li X, Guo B. Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010;70(2):646–54.PubMedCrossRefGoogle Scholar
  92. 92.
    Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One. 2012;7(3):e33729.PubMedCrossRefGoogle Scholar
  93. 93.
    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–73.PubMedCrossRefGoogle Scholar
  94. 94.
    van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA, et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol. 2007;52(2):455–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Kong D, Heath E, Chen W, Cher M, Powell I, Heilbrun L, et al. Epigenetic silencing of miR-34a in human prostate cancer cells and tumor tissue specimens can be reversed by BR-DIM treatment. Am J Transl Res. 2012;4(1):14–23.PubMedGoogle Scholar
  96. 96.
    Fimognari C, Hrelia P. Sulforaphane as a promising molecule for fighting cancer. Mutat Res. 2007;635(2-3):90–104.PubMedCrossRefGoogle Scholar
  97. 97.
    Weng JR, Tsai CH, Kulp SK, Chen CS. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett. 2008;262(2):153–63.PubMedCrossRefGoogle Scholar
  98. 98.
    Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.PubMedCrossRefGoogle Scholar
  99. 99.
    Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (New York, NY). 2009;325(5942):834–40.CrossRefGoogle Scholar
  100. 100.
    Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol. 2011;29(3):255–65.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Gregory W. Watson
    • 1
    • 2
  • Laura M. Beaver
    • 2
  • David E. Williams
    • 2
    • 3
  • Roderick H. Dashwood
    • 2
    • 3
  • Emily Ho
    • 2
    • 4
  1. 1.Molecular and Cellular BiologyOregon State UniversityCorvallisUSA
  2. 2.Linus Pauling InstituteOregon State UniversityCorvallisUSA
  3. 3.Environmental and Molecular ToxicologyOregon State UniversityCorvallisUSA
  4. 4.Biological and Population Health SciencesOregon State UniversityCorvallisUSA

Personalised recommendations