Skip to main content

Advertisement

Log in

Metabolism and Tissue Distribution of Sulforaphane in Nrf2 Knockout and Wild-Type Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To determine the metabolism and tissue distribution of the dietary chemoprotective agent sulforaphane following oral administration to wild-type and Nrf2 knockout (Nrf2−/−) mice.

Methods

Male and female wild-type and Nrf2−/− mice were given sulforaphane (5 or 20 μmoles) by oral gavage; plasma, liver, kidney, small intestine, colon, lung, brain and prostate were collected at 2, 6 and 24 h (h). The five major metabolites of sulforaphane were measured in tissues by high performance liquid chromatography coupled with tandem mass spectrometry.

Results

Sulforaphane metabolites were detected in all tissues at 2 and 6 h post gavage, with the highest concentrations in the small intestine, prostate, kidney and lung. A dose-dependent increase in sulforaphane concentrations was observed in all tissues except prostate. At 5 μmole, Nrf2−/− genotype had no effect on sulforaphane metabolism. Only Nrf2−/− females given 20 μmoles sulforaphane for 6 h exhibited a marked increase in tissue sulforaphane metabolite concentrations. The relative abundance of each metabolite was not strikingly different between genders and genotypes.

Conclusions

Sulforaphane is metabolized and reaches target tissues in wild-type and Nrf2−/− mice. These data provide further evidence that sulforaphane is bioavailable and may be an effective dietary chemoprevention agent for several tissue sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARE:

antioxidant response element

GSH:

glutathione

GST:

glutathione-S-transferase

Keap1:

kelch-like ECH-associated protein 1

LC-MS/MS:

liquid chromatography-tandem mass spectrometry

Nrf2:

nuclear factor erythroid 2 (NF-E2) related factor 2

PK:

pharmacokinetics

SFN-CG:

SFN-cysteinyl-glycine

SFN-Cys:

SFN-cysteine

SFN-GSH:

SFN-glutathione

SFN-NAC:

SFN-N-acetylcysteine

SI:

small intestine

SFN:

sulforaphane

TBHQ:

tert-butylhydroquinone

TFA:

trifluoroacetic acid

REFERENCES

  1. Steinbrecher A, Nimptsch K, Husing A, Rohrmann S, Linseisen J. Dietary glucosinolate intake and risk of prostate cancer in the epic-heidelberg cohort study. Int J Cancer. 2009;125(9):2179–86.

    Article  PubMed  CAS  Google Scholar 

  2. Tang L, Zirpoli GR, Jayaprakash V, Reid ME, McCann SE, Nwogu CE, et al. Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC Cancer. 2010;10(162):1–9.

    Google Scholar 

  3. Tang L, Zirpoli GR, Guru K, Moysich KB, Zhang Y, Ambrosone CB, et al. Intake of cruciferous vegetables modifies bladder cancer survival. Cancer Epidemiol Biomarkers Prev. 2010;19(7):1806–1811.

    Article  PubMed  CAS  Google Scholar 

  4. Seow A, Yuan JM, Sun CL, Van Den Berg D, Lee HP, Yu MC. Dietary isothiocyanates, glutathione s-transferase polymorphisms and colorectal cancer risk in the singapore chinese health study. Carcinogenesis. 2002;23(12):2055–61.

    Article  PubMed  CAS  Google Scholar 

  5. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev. 1998;7(12):1091–100.

    PubMed  CAS  Google Scholar 

  6. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55(3):224–36.

    Article  PubMed  CAS  Google Scholar 

  7. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008;269(2):291–304.

    Article  PubMed  CAS  Google Scholar 

  8. Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010;12(1):87–97.

    Article  PubMed  CAS  Google Scholar 

  9. Kwak M-K, Kensler TW. Targeting nrf2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol. 2010;244(1):66–76.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y, Callaway EC. High cellular accumulation of sulphoraphane, a dietary anticarcinogen, is followed by rapid transporter-mediated export as a glutathione conjugate. Biochem J. 2002;364(Pt 1):301–7.

    PubMed  CAS  Google Scholar 

  11. Hanlon N, Coldham N, Gielbert A, Kuhnert N, Sauer MJ, King LJ, et al. Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br J Nutr. 2008;99(3):559–64.

    Article  PubMed  CAS  Google Scholar 

  12. Keum YS, Khor TO, Lin W, Shen G, Kwon KH, Barve A, et al. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (tramp) mice: Implication of induction of nrf2, ho-1 and apoptosis and the suppression of akt-dependent kinase pathway. Pharm Res. 2009;26(10):2324–31.

    Article  PubMed  CAS  Google Scholar 

  13. Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, et al. Glutathione s-transferase m1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr. 2005;82(6):1283–91.

    PubMed  CAS  Google Scholar 

  14. Hu R, Khor TO, Shen G, Jeong WS, Hebbar V, Chen C, et al. Cancer chemoprevention of intestinal polyposis in apcmin/+ mice by sulforaphane, a natural product derived from cruciferous vegetable. Carcinogenesis. 2006;27(10):2038–46.

    Article  PubMed  CAS  Google Scholar 

  15. Singh SV, Warin R, Xiao D, Powolny AA, Stan SD, Arlotti JA, et al. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in tramp mice in association with increased cytotoxicity of natural killer cells. Cancer Res. 2009;69(5):2117–25.

    Article  PubMed  CAS  Google Scholar 

  16. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis. 2007;28(7):1485–90.

    Article  PubMed  CAS  Google Scholar 

  17. Saw CL, Huang MT, Liu Y, Khor TO, Conney AH, Kong AN. Impact of nrf2 on uvb-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog. 2010; Published online ahead of print Dec 28 2010; (doi:10.1002/mc.20725).

  18. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A. Pharmacological targeting of the transcription factor nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxid Redox Signal. 2011; Published online ahead of print March 28 2011; (doi:10.1089/ars.2010.3731).

  19. Slatter JG, Rashed MS, Pearson PG, Han DH, Baillie TA. Biotransformation of methyl isocyanate in the rat. Evidence for glutathione conjugation as a major pathway of metabolism and implications for isocyanate-mediated toxicities. Chem Res Toxicol. 1991;4(2):157–61.

    Article  PubMed  CAS  Google Scholar 

  20. Al Janobi AA, Mithen RF, Gasper AV, Shaw PN, Middleton RJ, Ortori CA, et al. Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;844(2):223–34.

    Article  PubMed  Google Scholar 

  21. Petri N, Tannergren C, Holst B, Mellon FA, Bao Y, Plumb GW, et al. Absorption/metabolism of sulforaphane and quercetin, and regulation of phase ii enzymes, in human jejunum in vivo. Drug Metab Dispos. 2003;31(6):805–13.

    Article  PubMed  CAS  Google Scholar 

  22. Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: Inhibition of histone deacetylase. Cancer Res. 2004;64(16):5767–74.

    Article  PubMed  CAS  Google Scholar 

  23. Conaway CC, Krzeminski J, Amin S, Chung FL. Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes. Chem Res Toxicol. 2001;14(9):1170–6.

    Article  PubMed  CAS  Google Scholar 

  24. Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D, et al. Phenethyl isothiocyanate and sulforaphane and their n-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in a/j mice. Cancer Res. 2005;65(18):8548–57.

    Article  PubMed  CAS  Google Scholar 

  25. Yang YM, Jhanwar-Uniyal M, Schwartz J, Conaway CC, Halicka HD, Traganos F, et al. N-acetylcysteine conjugate of phenethyl isothiocyanate enhances apoptosis in growth-stimulated human lung cells. Cancer Res. 2005;65(18):8538–47.

    Article  PubMed  CAS  Google Scholar 

  26. Tang L, Li G, Song L, Zhang Y. The principal urinary metabolites of dietary isothiocyanates, n-acetylcysteine conjugates, elicit the same anti-proliferative response as their parent compounds in human bladder cancer cells. Anticancer Drugs. 2006;17(3):297–305.

    Article  PubMed  CAS  Google Scholar 

  27. Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol. 2002;20(3):631–6.

    PubMed  CAS  Google Scholar 

  28. Chiao JW, Wu H, Ramaswamy G, Conaway CC, Chung FL, Wang L, et al. Ingestion of an isothiocyanate metabolite from cruciferous vegetables inhibits growth of human prostate cancer cell xenografts by apoptosis and cell cycle arrest. Carcinogenesis. 2004;25(8):1403–8.

    Article  PubMed  CAS  Google Scholar 

  29. Chung FL, Conaway CC, Rao CV, Reddy BS. Chemoprevention of colonic aberrant crypt foci in fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis. 2000;21(12):2287–91.

    Article  PubMed  CAS  Google Scholar 

  30. Ma Q, Battelli L, Hubbs AF. Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor nrf2. Am J Pathol. 2006;168(6):1960–74.

    Article  PubMed  CAS  Google Scholar 

  31. Blackburn AC, Matthaei KI, Lim C, Taylor MC, Cappello JY, Hayes JD, et al. Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways. Mol Pharmacol. 2006;69(2):650–7.

    Article  PubMed  CAS  Google Scholar 

  32. Dai G, He L, Chou N, Wan YJ. Acetaminophen metabolism does not contribute to gender difference in its hepatotoxicity in mouse. Toxicol Sci. 2006;92(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  33. Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR, et al. Loss of the nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione s-transferase gsta1, gsta2, gstm1, gstm2, gstm3 and gstm4 genes in the livers of male and female mice. Biochem J. 2002;365(Pt 2):405–16.

    Article  PubMed  CAS  Google Scholar 

  34. Shen G, Kong AN. Nrf2 plays an important role in coordinated regulation of phase ii drug metabolism enzymes and phase iii drug transporters. Biopharm Drug Dispos. 2009;30(7):345–55.

    Article  PubMed  CAS  Google Scholar 

  35. Anwar-Mohamed A, Degenhardt OS, El Gendy MA, Seubert JM, Kleeberger SR, El-Kadi AO. The effect of nrf2 knockout on the constitutive expression of drug metabolizing enzymes and transporters in c57bl/6 mice livers. Toxicol In Vitro. 2011; Published online ahead of print Jan 31 2011; (doi:10.1016/j.tiv.2011.01.014).

  36. Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66(24):11580–4.

    Article  PubMed  CAS  Google Scholar 

  37. Osburn WO, Karim B, Dolan PM, Liu G, Yamamoto M, Huso DL, et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer. 2007;121(9):1883–91.

    Article  PubMed  CAS  Google Scholar 

  38. Khor TO, Huang MT, Prawan A, Liu Y, Hao X, Yu S, et al. Increased susceptibility of nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila). 2008;1(3):187–91.

    Article  CAS  Google Scholar 

  39. Falkner KC, Pinaire JA, Xiao GH, Geoghegan TE, Prough RA. Regulation of the rat glutathione s-transferase a2 gene by glucocorticoids: Involvement of both the glucocorticoid and pregnane x receptors. Mol Pharmacol. 2001;60(3):611–9.

    PubMed  CAS  Google Scholar 

  40. Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47(5):566–78.

    Article  PubMed  CAS  Google Scholar 

  41. Kassahun K, Davis M, Hu P, Martin B, Baillie T. Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: Identification of phase i metabolites and glutathione conjugates. Chem Res Toxicol. 1997;10(11):1228–33.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

We gratefully acknowledge Dr. Carmen Wong, Mohaiza Dashwood, Dr. Praveen Rajendran, Lydia Petell, Karin Hardin, Lauren Atwell and Dr. Laura Beaver for help with tissue collection and processing. Thanks to Jeff Morre for assistance with mass spectrometry. This work was supported in part the Environmental Health Science Center at Oregon State University (NIEHS P30 ES00210) and NIH grants (CA090890, CA122906, CA122959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, J.D., Hsu, A., Williams, D.E. et al. Metabolism and Tissue Distribution of Sulforaphane in Nrf2 Knockout and Wild-Type Mice. Pharm Res 28, 3171–3179 (2011). https://doi.org/10.1007/s11095-011-0500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0500-z

KEY WORDS

Navigation