Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53. https://doi.org/10.1038/nrn1824.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201. https://doi.org/10.1016/j.neuron.2008.01.003.
CAS
Article
PubMed
PubMed Central
Google Scholar
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14:1398–405. https://doi.org/10.1038/nn.2946.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lo EH, Rosenberg GA. The neurovascular unit in health and disease introduction. Stroke. 2009;40(3 SUPPL. 1):S2–3. https://doi.org/10.1161/STROKEAHA.108.534404.
Article
PubMed
PubMed Central
Google Scholar
Segura I, De Smet F, Hohensinner PJ, de Almodovar CR, Carmeliet P. The neurovascular link in health and disease: an update. Trends Mol Med. 2009;15:439–51. https://doi.org/10.1016/j.molmed.2009.08.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Iadecola C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010;120:287–96. https://doi.org/10.1007/s00401-010-0718-6.
Article
PubMed
PubMed Central
Google Scholar
Daneman R. The blood-brain barrier in health and disease. Ann Neurol. 2012;72:648–72. https://doi.org/10.1002/ana.23648.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hawkins BT. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85. https://doi.org/10.1124/pr.57.2.4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967;34:207–17. https://doi.org/10.1083/jcb.34.1.207.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nabeshima S, Reese TS, Landis DMD, Brightman MW. Junctions in the meninges and marginal glia. J Comp Neurol. 1975;164:127–69.
CAS
PubMed
Article
PubMed Central
Google Scholar
Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–210. https://doi.org/10.1016/S0140-6736(17)32152-9.
Article
Google Scholar
Møllgård K, Saunders NR. The development of the human blood-brain and blood-CSF barriers. Neuropathol Appl Neurobiol. 1986;12:337–58. https://doi.org/10.1111/j.1365-2990.1986.tb00146.x.
Article
PubMed
PubMed Central
Google Scholar
Rascher G, Wolburg H. The tight junctions of the leptomeningeal blood-cerebrospinal fluid barrier during development. J brain Res. 1997;38:525–40. http://www.ncbi.nlm.nih.gov/pubmed/9476217
CAS
Google Scholar
Medwell J, Wray D. Handwriting: what do we know and what do we need to know? Literacy. 2007;41:10–7.
Article
Google Scholar
Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20:57–76.
CAS
PubMed
Article
PubMed Central
Google Scholar
Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68:409–27.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6:393–403. https://doi.org/10.1038/nrneurol.2010.74.
Rapoport B, Adams RJ. Induction of refractoriness to thyrotropin stimulation in cultured thyroid cells. Dependence on new protein synthesis. J Biol Chem. 1976;251:6653–61.
CAS
PubMed
Google Scholar
Grimm A, Friedland K, Eckert A. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology. 2016;17:281–96. https://doi.org/10.1007/s10522-015-9618-4.
CAS
Article
PubMed
Google Scholar
Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Delzenne NM. Changes in gut microbiota control metabolic diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81. https://doi.org/10.2337/db07-1403.Additional.
CAS
Article
PubMed
PubMed Central
Google Scholar
León-Pedroza JI, González-Tapia LA, del Olmo-Gil E, Castellanos-Rodríguez D, Escobedo G, González-Chávez A. Low-grade systemic inflammation and the development of metabolic diseases: From the molecular evidence to the clinical practice. Cirugía y Cir. 2015;83:543–51. https://doi.org/10.1016/j.circen.2015.11.008.
Article
Google Scholar
Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315:2284–91. https://doi.org/10.1001/jama.2016.6458.
CAS
Article
PubMed
PubMed Central
Google Scholar
Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kelleher RJ, Soiza RL. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? Am J Cardiovasc Dis. 2013;3:197–226. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819581/.
PubMed
PubMed Central
Google Scholar
Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 2012;53:37–44. https://doi.org/10.1111/j.1528-1167.2012.03701.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Vliet EA, Araújo SDC, Redeker S, Van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130:521–34.
PubMed
Article
PubMed Central
Google Scholar
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25. https://doi.org/10.1016/j.nbd.2009.07.030.
CAS
Article
PubMed
PubMed Central
Google Scholar
Marchi N, Granata T, Alexopoulos A, Janigro D. The blood-brain barrier hypothesis in drug resistant epilepsy. Brain. 2012;135(Pt 4):e211.
PubMed
PubMed Central
Article
Google Scholar
Raabe A, Schmitz AK, Pernhorst K, Grote A, Von Der Brelie C, Urbach H, et al. Cliniconeuropathologic correlations show astroglial albumin storage as a common factor in epileptogenic vascular lesions. Epilepsia. 2012;53:539–48.
PubMed
PubMed Central
Article
Google Scholar
Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54. https://doi.org/10.1016/j.neuroscience.2015.05.018.
CAS
Article
PubMed
PubMed Central
Google Scholar
Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci. 2001;2:734–44. https://doi.org/10.1038/35094583.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hassan W, Noreen H, Castro-Gomes V, Mohammadzai I, Batista Teixeira da Rocha J, Landeira-Fernandez J. Association of oxidative stress with psychiatric disorders. Curr Pharm Des. 2016;22:2960–2974. doi:https://doi.org/10.2174/1381612822666160307145931.
Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and Antidepressant Medications: Meta-Analyses And Implications. Biol Psychiatry. 2008;64:527–32. https://doi.org/10.1016/j.biopsych.2008.05.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157:683–94. https://doi.org/10.1176/appi.ajp.157.5.683.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pollak TA, Drndarski S, Stone JM, David AS, McGuire P, Abbott NJ. The blood–brain barrier in psychosis. Lancet Psychiatry. 2018;5:79–92. https://doi.org/10.1016/S2215-0366(17)30293-6.
Article
PubMed
PubMed Central
Google Scholar
Booth FW, Laye MJ. Lack of adequate appreciation of physical exercise’s complexities can pre-empt appropriate design and interpretation in scientific discovery. J Physiol. 2009;587:5527–39.
CAS
PubMed
PubMed Central
Article
Google Scholar
Szalewska D, Radkowski M, Demkow U, Winklewski PJ. Exercise strategies to counteract brain aging effects. Adv Exp Med Biol. 2017;1020:69–79.
PubMed
Article
PubMed Central
Google Scholar
Stehouwer CD, Ferreira I. Diabetes, lipids and other cardiovascular risk factors. In: Safar ME, O’Rourke MF, editors. Arterial stiffness in Hypertension. Amsterdam: Elsevier; 2006. p. 427.
Google Scholar
Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7. https://doi.org/10.1038/nature05485.
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9. https://doi.org/10.1172/JCI200525102.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hermann A, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci. 1994;107:3655–63.
Google Scholar
Wellen KE, Fucho R, Gregor MF, Furuhashi M, Morgan C, Lindstad T, et al. Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell. 2007;129:537–48.
CAS
PubMed
PubMed Central
Article
Google Scholar
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8. https://doi.org/10.1038/nature04634.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rajkovic N, Zamaklar M, Lalic K, Jotic A, Lukic L, Milicic T, et al. Relationship between obesity, adipocytokines and inflammatory markers in type 2 diabetes: relevance for cardiovascular risk prevention. Int J Environ Res Public Health. 2014;11:4049–65.
PubMed
PubMed Central
Article
CAS
Google Scholar
Reinehr T, Karges B, Meissner T, Wiegand S, Stoffel-Wagner B, Holl RW, et al. Inflammatory markers in obese adolescents with type 2 diabetes and their relationship to hepatokines and adipokines. J Pediatr. 2016;173:131–5. https://doi.org/10.1016/j.jpeds.2016.02.055.
CAS
Article
PubMed
PubMed Central
Google Scholar
Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetes. 2003;52:812–7.
CAS
PubMed
Article
PubMed Central
Google Scholar
Gironès X, Cruz-Sánchez CZ, Ortega A, Sasaki N, Makita Z, Lafuente JV, Kalaria R, Cruz-Sánchez FF. Nϵ-Carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease. Free Radic Biol Med. 2004;15:10.
Google Scholar
Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R. Increased blood-brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging. 2013;34:2064–70. https://doi.org/10.1016/j.neurobiolaging.2013.02.010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Holland WL, Knotts TA, Chavez JA, Wang L-P, Hoehn KL, Summers SA. Lipid mediators of insulin resistance. Nutr Rev. 2007;65(6 Pt 2):S39–46. http://www.ncbi.nlm.nih.gov/pubmed/17605313. Accessed 22 Dec 2018
PubMed
Article
PubMed Central
Google Scholar
De La Monte SM. Triangulated mal-signaling in Alzheimer’s disease: Roles of neurotoxic ceramides, ER stress, and insulin resistance reviewed. J Alzheimer’s Dis. 2012;30(SUPPL.2):S231–49.
Article
CAS
Google Scholar
Dubé JJ, Amati F, Toledo FGS, Stefanovic-Racic M, Rossi A, Coen P, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011;54:1147–56.
PubMed
PubMed Central
Article
CAS
Google Scholar
Kasumov T, Solomon TPJ, Hwang C, Huang H, Haus JM, Zhang R, et al. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity. 2015;23:1414–21. https://doi.org/10.1002/oby.21117.
CAS
Article
PubMed
PubMed Central
Google Scholar
Abd El-Kader SM. Aerobic versus resistance exercise training in modulation of insulin resistance, adipocytokines and inflammatory cytokine levels in obese type 2 diabetic patients. J Adv Res. 2011;2:179–83. https://doi.org/10.1016/j.jare.2010.09.003.
Article
Google Scholar
De Senna PN, Xavier LL, Bagatini PB, Saur L, Galland F, Zanotto C, et al. Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats. Brain Res. 2015;1618:75–82.
PubMed
Article
CAS
PubMed Central
Google Scholar
Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. J Am Med Assoc. 2003;289:1799–804. https://doi.org/10.1001/jama.289.14.1799.
CAS
Article
Google Scholar
Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M. Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol. 2005;100:93–9.
PubMed
Article
PubMed Central
Google Scholar
Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE. Cross-sectional and prospective relationships of interleukin-6 and c-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci. 2000;55:M709–15.
CAS
PubMed
Article
PubMed Central
Google Scholar
Trøseid M, Lappegård KT, Claudi T, Damås JK, Mørkrid L, Brendberg R, et al. Exercise reduces plasma levels of the chemokines MCP-1 and IL-8 in subjects with the metabolic syndrome. Eur Heart J. 2004;25:349–55.
PubMed
Article
CAS
PubMed Central
Google Scholar
Marcell TJ, McAuley KA, Traustadóttir T, Reaven PD. Exercise training is not associated with improved levels of C-reactive protein or adiponectin. Metabolism. 2005;54:533–41. https://doi.org/10.1016/j.metabol.2004.11.008.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214:337–46. https://doi.org/10.1242/jeb.048074.
CAS
Article
PubMed
PubMed Central
Google Scholar
Petersen AMW. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–62. https://doi.org/10.1152/japplphysiol.00164.2004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Prokopchuk O, Liu Y, Wang L, Wirth K, Schmidtbleicher D, Steinacker JM. Skeletal muscle IL-4, IL-4Rα, IL-13 and IL-13Rα1 expression and response to strength training. Exerc Immunol Rev. 2007;13:67–75. http://www.ncbi.nlm.nih.gov/pubmed/18198661
PubMed
PubMed Central
Google Scholar
Pedersen BK, Fischer CP. Physiological roles of muscle-derived interleukin-6 in response to exercise. Curr Opin Clin Nutr Metab Care. 2007;10:265–71. https://doi.org/10.1097/MCO.0b013e3280ebb5b3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease. Nature. 2008;454:463–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nishida Y, Iyadomi M, Higaki Y, Tanaka H, Kondo Y, Otsubo H, et al. Association between the PPARGC1A polymorphism and aerobic capacity in Japanese middle-aged men. Intern Med. 2015;54:359–66. https://doi.org/10.2169/internalmedicine.54.3170.
CAS
Article
PubMed
PubMed Central
Google Scholar
Aronson D, Sheikh-Ahmad M, Avizohar O, Kerner A, Sella R, Bartha P, et al. C-Reactive protein is inversely related to physical fitness in middle-aged subjects. Atherosclerosis. 2004;176:173–9.
CAS
PubMed
Article
PubMed Central
Google Scholar
Chupel MU, Minuzzi LG, Furtado GE, Santos ML, Hogervorst E, Filaire E, et al. Exercise and taurine in inflammation, cognition, and peripheral markers of blood-brain barrier integrity in older women. Appl Physiol Nutr Metab. 2018;43:apnm-2017–0775. https://doi.org/10.1139/apnm-2017-0775.
CAS
Article
Google Scholar
Stone TW, Forrest CM, Mackay GM, Stoy N, Darlington LG. Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis. 2007;22:337–52.
CAS
PubMed
Article
PubMed Central
Google Scholar
Ball HJ, Sanchez-Perez A, Weiser S, Austin CJD, Astelbauer F, Miu J, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396:203–13.
CAS
PubMed
Article
PubMed Central
Google Scholar
Takao S, Sumisugu N, Hirata F, Hayaishi O. Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem. 1978;253:4700–6.
Google Scholar
Stone TW. Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci. 2007;25:2656–65.
PubMed
Article
PubMed Central
Google Scholar
Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci. 2007;257:221–39. https://doi.org/10.1016/j.jns.2007.01.033.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1356–65.
CAS
PubMed
Article
PubMed Central
Google Scholar
Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794. https://doi.org/10.1126/science.aaf9794.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78:842–53. https://doi.org/10.1046/j.1471-4159.2001.00498.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. BBA - Mol Cell Res. 1989;1012:140–7. https://doi.org/10.1016/0167-4889(89)90087-6.
CAS
Article
Google Scholar
Schlittler M, Goiny M, Agudelo LZ, Venckunas T, Brazaitis M, Skurvydas A, et al. Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am J Physiol Cell Physiol. 2016;310:C836–40. https://doi.org/10.1152/ajpcell.00053.2016.
Article
PubMed
PubMed Central
Google Scholar
András IE, Deli MA, Veszelka S, Hayashi K, Hennig B, Toborek M. The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J Cereb Blood Flow Metab. 2007;27:1431–43.
PubMed
Article
CAS
PubMed Central
Google Scholar
Beggiato S, Antonelli T, Tomasini MC, Tanganelli S, Fuxe K, Schwarcz R, et al. Kynurenic acid, by targeting α7 nicotinic acetylcholine receptors, modulates extracellular GABA levels in the rat striatum in vivo. Eur J Neurosci. 2013;37:1470–7. https://doi.org/10.1111/ejn.12160.
Article
PubMed
PubMed Central
Google Scholar
Hilmas C, Pereira EFR, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21:7463–73.
CAS
PubMed
Article
PubMed Central
Google Scholar
Konradsson-Geuken Å, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, et al. Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience. 2010;169:1848–59.
CAS
PubMed
PubMed Central
Article
Google Scholar
Winklewski PJ, Radkowski M, Wszedybyl-Winklewska M, Demkow U. Brain inflammation and hypertension: the chicken or the egg? Neuroinflammation. 2015;3:12.
Google Scholar
Winklewski PJ, Radkowski M, Demkow U. Neuroinflammatory mechanisms of hypertension: potential therapeutic implications. Curr Opin Nephrol Hypertens. 2016;25:410–6.
CAS
PubMed
Article
PubMed Central
Google Scholar
Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol. 2016;594:1591–600.
CAS
PubMed
Article
PubMed Central
Google Scholar
Carey RM, Wang ZQ, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension. 2000;35(1 Pt 2):155–63.
CAS
PubMed
Article
PubMed Central
Google Scholar
Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35:881–900. https://doi.org/10.1016/S1357-2725(02)00271-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Muller DN, Shagdarsuren E, Park JK, Dechend R, Mervaala E, Hampich F, et al. Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol. 2002;161:1679–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, et al. Brain microglial cytokines in neurogenic hypertension. Hypertension. 2010;56:297–303.
CAS
PubMed
PubMed Central
Article
Google Scholar
Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JFR. Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Respir Physiol Neurobiol. 2011;178:422–8.
CAS
PubMed
Article
PubMed Central
Google Scholar
Zubcevic J, Waki H, Raizada M, Paton J. Autonomic-immune-vascular dysfunction: an emerging concept for neurogenic hypertension. Hypertension. 2011;57:1026–33.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ito H, Takemori K, Kawai J, Suzuki T. AT1 receptor antagonist prevents brain edema without lowering blood pressure. Brain Edema XI. 2000;76:141–5. https://doi.org/10.1007/978-3-7091-6346-7_29.
CAS
Article
Google Scholar
de Vries HE, Kuiper J, de Boer AG, Van Berkel TJC, Breimer DD. The blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev. 1997;49:143–56. http://pharmrev.aspetjournals.org/content/49/2/143.
PubMed
PubMed Central
Google Scholar
Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T. Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience. 2010;171:852–8. https://doi.org/10.1016/j.neuroscience.2010.09.029.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pan YX, Gao L, Wang WZ, Zheng H, Liu D, Patel KP, et al. Exercise training prevents arterial baroreflex dysfunction in rats treated with central angiotensin II. Hypertension. 2007;49:519–27.
CAS
PubMed
PubMed Central
Article
Google Scholar
Agarwal D, Welsch MA, Keller JN, Francis J. Chronic exercise modulates RAS components and improves balance between pro-and anti-inflammatory cytokines in the brain of SHR. Basic Res Cardiol. 2011;106:1069–85.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chaar LJ, Alves TP, Junior AMB, Michelini LC. Early training-induced reduction of angiotensinogen in autonomic areas-the main effect of exercise on brain renin-angiotensin system in hypertensive rats. PLoS One. 2015;10(9):e0137395.
PubMed
PubMed Central
Article
CAS
Google Scholar
Jia LL, Kang YM, Wang FX, Li HB, Zhang Y, Yu XJ, et al. Exercise training attenuates hypertension and cardiac hypertrophy by modulating neurotransmitters and cytokines in hypothalamic paraventricular nucleus. PLoS One. 2014;9 https://doi.org/10.1371/journal.pone.0085481.
Negrão CE, Moreira ED, Brum PC, Denadai ML, Krieger EM. Vagal and sympathetic control of heart rate during exercise by sedentary and exercise-trained rats. Braz J Med Biol Res. 1992;25:1045–52. https://doi.org/10.1371/journal.pone.0094927.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sugawara J, Murakami H, Maeda S, Kuno S, Matsuda M. Change in post-exercise vagal reactivation with exercise training and detraining in young men. Eur J Appl Physiol. 2001;85:259–63.
CAS
PubMed
Article
PubMed Central
Google Scholar
Buttler L, Jordão MT, Fragas MG, Ruggeri A, Ceroni A, Michelini LC. Maintenance of blood-brain barrier integrity in hypertension: a novel benefit of exercise training for autonomic control. Front Physiol. 2017;8:1048.
PubMed
PubMed Central
Article
Google Scholar
Meshorer E. Chronic cholinergic imbalances promote brain diffusion and transport abnormalities. FASEB J. 2005;19:910–22. https://doi.org/10.1096/fj.04-2957com.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K. Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J Hypertens. 2012;30:97–106.
CAS
PubMed
Article
PubMed Central
Google Scholar
Muratani H, Averill DB, Ferrario CM. Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am J Physiol. 1991;260(5 Pt 2):R977–84.
CAS
PubMed
PubMed Central
Google Scholar
Vieira AA, Colombari E, De Luca LA, Colombari DSA, De Paula PM, Menani JV. Importance of angiotensinergic mechanisms for the pressor response to l-glutamate into the rostral ventrolateral medulla. Brain Res. 2010;1322:72–80.
CAS
PubMed
Article
PubMed Central
Google Scholar
Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR, Lopes OU. Role of the medulla oblongata in hypertension. Hypertension. 2001;38:549–54. https://doi.org/10.1161/01.HYP.38.3.549.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kishi T, Hirooka Y, Sunagawa K. Sympathoinhibition caused by orally administered telmisartan through inhibition of the at 1 receptor in the rostral ventrolateral medulla of hypertensive rats. Hypertens Res. 2012;35:940–6. https://doi.org/10.1038/hr.2012.63.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mills E, Minson J, Drolet G, Chalmers J. Effect of intrathecal amino acid receptor antagonists on basal blood pressure and pressor responses to brainstem stimulation in normotensive and hypertensive rats. J Cardiovasc Pharmacol. 1990;15:877–83.
CAS
PubMed
Article
PubMed Central
Google Scholar
Schreurs J, Seelig T, Schulman H. β2-adrenergic receptors on peripheral nerves. J Neurochem. 1986;46:294–6. https://doi.org/10.1111/j.1471-4159.1986.tb12961.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Braun V, Clarke V. What can “thematic analysis” offer health and wellbeing researchers? Int J Qual Stud Health Well-being. 2014; https://doi.org/10.3402/qhw.v9.26152.
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, et al. Locus ceruleus norepinephrine release: a central regulator of cns spatio-temporal activation? Front Synaptic Neurosci. 2016;8:25. https://doi.org/10.3389/fnsyn.2016.00025.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chandler DJ. Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations. Brain Res. 2016;1641 Pt B:197–206. doi:https://doi.org/10.1016/j.brainres.2015.11.022.
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016;139:154–78. https://doi.org/10.1111/jnc.13447.
CAS
Article
PubMed
Google Scholar
O’Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res. 2012;37:2496–512. https://doi.org/10.1007/s11064-012-0818-x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hetier E, Ayala J, Bousseau A, Prochiantz A. Modulation of interleukin-1 and tumor necrosis factor expression by β-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res. 1991;86:407–13. https://doi.org/10.1007/BF00228965.
CAS
Article
PubMed
Google Scholar
Frohman EM, Vayuvegula B, van den Noort S, Gupta S. Norepinephrine inhibits gamma-interferon-induced MHC class II (Ia) antigen expression on cultured brain astrocytes. J Neuroimmunol. 1988;17:89–101. https://doi.org/10.1016/0165-5728(88)90017-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sanders VM. The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet? Brain Behav Immun. 2012;26:195–200. https://doi.org/10.1016/j.bbi.2011.08.001.
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang HW, Fang XX, Wang XQ, Peng YP, Qiu YH. Regulation of differentiation and function of helper T cells by lymphocyte-derived catecholamines via α1- and β2-adrenoceptors. Neuroimmunomodulation. 2014;22:138–51. https://doi.org/10.1159/000360579.
CAS
Article
PubMed
Google Scholar
Jurič DM, Lončar D, Čarman-Kržan M. Noradrenergic stimulation of BDNF synthesis in astrocytes: mediation via α1- and β1/β2-adrenergic receptors. Neurochem Int. 2008;52:297–306. https://doi.org/10.1016/j.neuint.2007.06.035.
CAS
Article
PubMed
Google Scholar
Middlemas D. Brain derived neurotrophic factor. xPharm Compr Pharmacol Ref. 2011;22:1–4. https://doi.org/10.1016/B978-008055232-3.61338-8.
Article
Google Scholar
Zafra F, Lindholm D, Castrén E, Hartikka J, Thoenen H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J Neurosci. 1992;12:4793–9. https://doi.org/10.1038/319600A0.
CAS
Article
PubMed
Google Scholar
Schurr A, West CA, Rigor BM. Lactate-supported synaptic function in the rat hippocampal slice preparation. Sci Sci. 1988;240:1326–8. https://doi.org/10.1126/science.3375817.
CAS
Article
Google Scholar
Van Hall G, Strømstad M, Rasmussen P, Jans Ø, Zaar M, Gam C, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29:1121–9. https://doi.org/10.1038/jcbfm.2009.35.
CAS
Article
PubMed
Google Scholar
Benarroch EE. Glycogen metabolism: Metabolic coupling between astrocytes and neurons. Neurology. 2010;74:919–23. https://doi.org/10.1212/WNL.0b013e3181d3e44b.
CAS
Article
PubMed
Google Scholar
Fillenz M, Lowry JP, Boutelle MG, Fray AE. The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol Scand. 1999;167:275–84. https://doi.org/10.1046/j.1365-201X.1999.00578.x.
CAS
Article
PubMed
Google Scholar
Hertz L, Lovatt D, Goldman SA, Nedergaard M. Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem Int. 2010;57:411–20. https://doi.org/10.1016/j.neuint.2010.03.019.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62. https://doi.org/10.1002/glia.20528.
Article
PubMed
Google Scholar
Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2:33ra37. https://doi.org/10.1126/scitranslmed.3001006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Delezie J, Handschin C. Endocrine crosstalk between skeletal muscle and the brain. Front Neurol. 2018;9:698. https://doi.org/10.3389/fneur.2018.00698.
Article
PubMed
PubMed Central
Google Scholar
Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20:291–9. https://doi.org/10.1159/000017324.
CAS
Article
PubMed
Google Scholar
Bergersen L, Rafiki A, Ottersen OP. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res. 2002;27:89–96. https://doi.org/10.1023/A:1014806723147.
CAS
Article
PubMed
Google Scholar
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab. 2015;35:176–85. https://doi.org/10.1038/jcbfm.2014.206.
CAS
Article
PubMed
Google Scholar
Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013;36:396–404. https://doi.org/10.1016/j.tins.2013.04.002.
CAS
Article
PubMed
Google Scholar
Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/AKT and promote angiogenesis. J Biol Chem. 2013;288:21161–72. https://doi.org/10.1074/jbc.M113.474619.
CAS
Article
PubMed
PubMed Central
Google Scholar
Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017;8:15557. https://doi.org/10.1038/ncomms15557.
CAS
Article
PubMed
PubMed Central
Google Scholar
Todd RD, Botteron KN. Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol Psychiatry. 2001;50:151–8. https://doi.org/10.1016/S0006-3223(01)01173-8.
CAS
Article
PubMed
Google Scholar
Russell VA, Oades RD, Tannock R, Killeen PR, Auerbach JG, Johansen EB, et al. Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav Brain Funct. 2006;2:30. https://doi.org/10.1186/1744-9081-2-30.
CAS
Article
PubMed
PubMed Central
Google Scholar
Medin T, Medin H, Brandsar Hefte M, Storm-Mathisen J, Bergersen LH. Upregulation of the lactate transporter monocarboxylate transporter 1 at the blood-brain barrier in a rat model of attention-deficit/hyperactivity disorder suggests hyperactivity could be a form of self-treatment. Behav Brain Res. 2018;360:279–85. https://doi.org/10.1016/j.bbr.2018.12.023.
CAS
Article
PubMed
Google Scholar
Dalgas U, Stenager E. Exercise and disease progression in multiple sclerosis: can exercise slow down the progression of multiple sclerosis? Ther Adv Neurol Disord. 2012;5:81–95.
PubMed
PubMed Central
Article
Google Scholar
Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GPA, Libonati MA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2003;348:15–23. https://doi.org/10.1056/NEJMoa020696.
CAS
Article
PubMed
Google Scholar
Paterson P. Experimental allergic encephalomyelitis: role of fibrin deposition in immunopathogenesis of inflammation in rats. Fed Proc. 1976;35:2428–34.
CAS
PubMed
Google Scholar
Mokhtarzade M, Motl R, Negaresh R, Zimmer P, Khodadoost M, Baker JS, et al. Exercise-induced changes in neurotrophic factors and markers of blood-brain barrier permeability are moderated by weight status in multiple sclerosis. Neuropeptides. 2018;70:93–100. https://doi.org/10.1016/j.npep.2018.05.010.
CAS
Article
PubMed
Google Scholar
White LJ, Castellano V. Exercise and brain health: Implications for multiple sclerosis: Part II immune factors and stress hormones. Sport Med. 2008;38:179–86. https://doi.org/10.2165/00007256-200838030-00001.
Article
Google Scholar
Rossi S, Furlan R, De Chiara V, Musella A, Lo Giudice T, Mataluni G, et al. Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis. Neurobiol Dis. 2009;36:51–9.
CAS
PubMed
Article
Google Scholar
van Praag H. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25:8680–5. https://doi.org/10.1523/JNEUROSCI.1731-05.2005.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–72. https://doi.org/10.1016/j.tins.2007.06.011.
CAS
Article
PubMed
Google Scholar
Castellano V, White LJ. Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. J Neurol Sci. 2008;269:85–91. https://doi.org/10.1016/j.jns.2007.12.030.
CAS
Article
PubMed
Google Scholar
Leavitt VM, Cirnigliaro C, Cohen A, Farag A, Brooks M, Wecht JM, et al. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings. Neurocase. 2014;20:695–7. https://doi.org/10.1080/13554794.2013.841951.
CAS
Article
PubMed
Google Scholar
Motl RW, Pilutti LA, Learmonth YC, Goldman MD, Brown T. Clinical importance of steps taken per day among persons with multiple sclerosis. PLoS One. 2013;8:e73247. https://doi.org/10.1371/journal.pone.0073247.
CAS
Article
PubMed
PubMed Central
Google Scholar
Beier M, Bombardier CH, Hartoonian N, Motl RW, Kraft GH. Improved physical fitness correlates with improved cognition in multiple sclerosis. Arch Phys Med Rehabil. 2014;95:1328–34. https://doi.org/10.1016/j.apmr.2014.02.017.
Article
PubMed
Google Scholar
Prakash RS, Snook EM, Erickson KI, Colcombe SJ, Voss MW, Motl RW, et al. Cardiorespiratory fitness: a predictor of cortical plasticity in multiple sclerosis. Neuroimage. 2007;34:1238–44. https://doi.org/10.1016/j.neuroimage.2006.10.003.
Article
PubMed
Google Scholar
Prakash RS, Snook EM, Motl RW, Kramer AF. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 2010;1341:41–51. https://doi.org/10.1016/j.brainres.2009.06.063.
CAS
Article
PubMed
Google Scholar
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7:119. https://doi.org/10.3389/fnagi.2015.00119.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Front Aging Neurosci. 2017;9:118. https://doi.org/10.3389/fnagi.2017.00118.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bednarczyk J, Lukasiuk K. Tight junctions in neurological diseases. Acta Neurobiol Exp. 2011;71:393–408.
Google Scholar
Gonçalves A, Ambrósio AF, Fernandes R. Regulation of claudins in blood-tissue barriers under physiological and pathological states. Tissue Barriers. 2013;1:e24782. https://doi.org/10.4161/tisb.24782.
Article
PubMed
PubMed Central
Google Scholar
Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, et al. Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One. 2013;8:e60921. https://doi.org/10.1371/journal.pone.0060921.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lepelletier FX, Mann DMA, Robinson AC, Pinteaux E, Boutin H. Early changes in extracellular matrix in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2017;43:167–82. https://doi.org/10.1111/nan.12295.
CAS
Article
PubMed
Google Scholar
Holmes C. Inflammation in Alzheimer’s disease. Dementia, Fifth Ed. 2017;14:508–18. https://doi.org/10.1201/9781315381572.
Article
Google Scholar
He X, Liu D, Zhang Q, Liang F, Dai G, Zeng J, et al. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci. 2017;10:144. https://doi.org/10.3389/fnmol.2017.00144.
CAS
Article
PubMed
PubMed Central
Google Scholar
Jensen CS, Hasselbalch SG, Waldemar G, Simonsen AH. Biochemical markers of physical exercise on mild cognitive impairment and dementia: Systematic review and perspectives. Front Neurol. 2015;6:187. https://doi.org/10.3389/fneur.2015.00187.
Article
PubMed
PubMed Central
Google Scholar
Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–9. https://doi.org/10.1001/archneurol.2009.307.
Article
PubMed
PubMed Central
Google Scholar
Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci. 2013;17:525–44. https://doi.org/10.1016/j.tics.2013.08.001.
Article
PubMed
PubMed Central
Google Scholar
Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72:239–52. https://doi.org/10.1097/PSY.0b013e3181d14633.
Article
PubMed
PubMed Central
Google Scholar
Groot C, Hooghiemstra AM, Raijmakers PGHM, van Berckel BNM, Scheltens P, Scherder EJA, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23. https://doi.org/10.1016/j.arr.2015.11.005.
CAS
Article
PubMed
Google Scholar
Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. Dement Geriatr Cogn Disord. 2014;38:347–65. https://doi.org/10.1159/000365388.
Article
PubMed
Google Scholar
Nieman DC. Current perspective on exercise immunology. Curr Sports Med Rep. 2003;2:239–42.
PubMed
Article
Google Scholar
Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103:693–9.
CAS
PubMed
Article
Google Scholar
Roh H-T, Cho S-Y, Yoon H-G, So W-Y. Effect of exercise intensity on neurotrophic factors and blood–brain barrier permeability induced by oxidative–nitrosative stress in male college students. Int J Sport Nutr Exerc Metab. 2017;27:239–46. https://doi.org/10.1123/ijsnem.2016-0009.
Article
PubMed
Google Scholar
Kasapis C, PD T. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45:1563–9. https://doi.org/10.1016/j.jacc.2004.12.077.
Plaisance EP, Grandjean PW. Physical activity and high-sensitivity C-reactive protein. Sport Med. 2006;36:443–58.
Article
Google Scholar
Koh SXT, Lee JKW. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sport Med. 2014;44:369–85. https://doi.org/10.1007/s40279-013-0119-9.
Article
Google Scholar
Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342:1–12.
CAS
PubMed
Article
Google Scholar
Roh HT, Cho SY, So WY. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J Sport Heal Sci. 2017;6:225–30.
Article
Google Scholar
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1:a002584. https://doi.org/10.1101/cshperspect.a002584.
Article
PubMed
PubMed Central
Google Scholar
Stålnacke BM, Tegner Y, Sojka P. Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. Brain Inj. 2004;18:899–909.
PubMed
Article
PubMed Central
Google Scholar
Riuzzi F, Sorci G, Beccafico S, Donato R. S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. implications for muscle regeneration. PLoS One. 2012;7
Shanker Sharma H, Cervós-Navarro J, Kumar DP. Increased blood-brain barrier permeability following acute short-term swimming exercise in conscious normotensive young rats. Neurosci Res. 1991;10:211–21. https://doi.org/10.1016/0168-0102(91)90058-7.
Article
Google Scholar
Bailey DM, Evans KA, Mceneny J, Young IS, Hullin DA, James PE, et al. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp Physiol. 2011;96:1196–207.
CAS
PubMed
Article
PubMed Central
Google Scholar
Görgens SW, Eckardt K, Jensen J, Drevon CA, Eckel J. Exercise and regulation of adipokine and myokine production. Prog Mol Biol Transl Sci. 2015;135:313–36.
PubMed
Article
CAS
PubMed Central
Google Scholar
Gleeson M, McFarlin B, Flynn M. Exercise and toll-like receptors. Exerc Immunol Rev. 2006;12:34–53.
PubMed
PubMed Central
Google Scholar
Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:141–50.
CAS
PubMed
Article
PubMed Central
Google Scholar
Kristiansen OP, Mandrup-Poulsen T. Interleukin-6 andand diabetes: the good, the bad, or the indifferent? Diabetes. 2005;54(suppl 2):114–24. https://doi.org/10.2337/diabetes.54.suppl_2.S114.
Gmiąt A, Jaworska J, Micielska K, Kortas J, Prusik K, Prusik K, et al. Improvement of cognitive functions in response to a regular Nordic walking training in elderly women—a change dependent on the training experience. Exp Gerontol. 2018;104:105–12. https://doi.org/10.1016/j.exger.2018.02.006.
Article
PubMed
PubMed Central
Google Scholar
Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515:287–91. https://doi.org/10.1111/j.1469-7793.1999.287ad.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ostrowski K, Schjerling P, Pedersen BK. Physical activity and plasma interleukin-6 in humans—effect of intensity of exercise. Eur J Appl Physiol. 2000;83:512–5.
CAS
PubMed
Article
PubMed Central
Google Scholar
Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78. https://doi.org/10.1016/S0065-2776(08)60532-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol. 1998;508:949–53.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jonsdottir IH, Schjerling P, Ostrowski K, Asp S, Richter EA. Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. J Physiol. 2000;528(Pt 1):157–63. https://doi.org/10.1111/j.1469-7793.2000.00157.x.
Steensberg A, Van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529:237–42.
CAS
PubMed
PubMed Central
Article
Google Scholar
Abramson JL, Vaccarino V. Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med. 2002;162:1286–92.
PubMed
Article
PubMed Central
Google Scholar
Gomez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic Biol Med. 2008;44:126–31.
CAS
PubMed
Article
PubMed Central
Google Scholar
Ji L. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic Biol Med. 2008;44:142–52. https://doi.org/10.1016/j.freeradbiomed.2007.02.031.
CAS
Article
PubMed
PubMed Central
Google Scholar
Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10:12. https://doi.org/10.1186/1475-2840-10-12.
Article
PubMed
PubMed Central
Google Scholar
McKee AC, Daneshvar DH, Alvarez VE, Stein TD. The neuropathology of sport. Acta Neuropathol. 2014;127:29–51.
CAS
PubMed
Article
PubMed Central
Google Scholar
Nguyen A, Duquette N, Mamarbachi M, Thorin E. Epigenetic regulatory effect of exercise on glutathione peroxidase 1 expression in the skeletal muscle of severely dyslipidemic mice. PLoS One. 2016;11:10.
Google Scholar
Qi Z, He J, Zhang Y, Shao Y, Ding S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radic Biol Med. 2011;50:794–800.
CAS
PubMed
Article
PubMed Central
Google Scholar
Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38:323–37. https://doi.org/10.1016/S1537-1891(02)00200-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H, et al. Claudin-1 and claudin-5 expression and tight junction morphology\rare altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100:323–31.
CAS
PubMed
Article
PubMed Central
Google Scholar
Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol. 1999;147:185–94. https://doi.org/10.1083/jcb.147.1.185.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003;161:653–60. https://doi.org/10.1083/jcb.200302070.
CAS
Article
PubMed
PubMed Central
Google Scholar
Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539–50. https://doi.org/10.1083/jcb.141.7.1539.
CAS
Article
PubMed
PubMed Central
Google Scholar
Balda MS, Whitney JA, Flores C. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 1996;134:1031–49. https://doi.org/10.1083/jcb.134.4.1031.
Tsukita S, Furuse M, Itoh M. Structural and signalling molecules come together at tight junctions Shoichiro Tsukita *, Mikio Furuse and Masahiko Itoh. Curr Opin Cell Biol. 1999;11:628–33. Figure 1: https://doi.org/10.1016/S0955-0674(99)00016-2.
Tsukita S, Itoh M. Multifunctional strands in tight junctions. Nat Rev. 2001;2:285–93.
CAS
Article
Google Scholar
Wong AST, Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol. 2003;161:1191–203.
CAS
PubMed
PubMed Central
Article
Google Scholar
Greenwood J, Amos CL, Walters CE, Couraud P-O, Lyck R, Engelhardt B, et al. Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J Immunol. 2003;171:2099–108. https://doi.org/10.4049/jimmunol.171.4.2099.
CAS
Article
PubMed
PubMed Central
Google Scholar
Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol. 1991;147:2913–21. http://www.ncbi.nlm.nih.gov/pubmed/1717579. Accessed 27 Sept 2018
CAS
PubMed
PubMed Central
Google Scholar
del Zoppo GJ, Milner R. Integrin-Matrix Interactions in the Cerebral Microvasculature. Arterioscler Thromb Vasc Biol. 2006;26:1966–75. https://doi.org/10.1161/01.ATV.0000232525.65682.a2.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta. 1812;2011:252–64. https://doi.org/10.1016/j.bbadis.2010.06.017.
CAS
Article
Google Scholar
Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585:3770–80.
CAS
PubMed
Article
PubMed Central
Google Scholar
Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788:842–57. https://doi.org/10.1016/j.bbamem.2008.10.022.
CAS
Article
PubMed
PubMed Central
Google Scholar
Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, et al. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol. 2011;193:565–82.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jia JP, Meng R, Sun YX, Sun WJ, Ji XM, Jia LF. Cerebrospinal fluid tau, Aβ1-42and inflammatory cytokines in patients with Alzheimer’s disease and vascular dementia. Neurosci Lett. 2005;383:12–6.
CAS
PubMed
Article
PubMed Central
Google Scholar
Wen H, Watry DD, Marcondes MCG, Fox HS. Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol. 2004;24:8408–17. https://doi.org/10.1128/MCB.24.19.8408-8417.2004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Souza PS, Gonçalves ED, Pedroso GS, Farias HR, Junqueira SC, Marcon R, et al. Physical exercise attenuates experimental autoimmune encephalomyelitis by inhibiting peripheral immune response and blood-brain barrier disruption. Mol Neurobiol. 2017;54:4723–37. https://doi.org/10.1007/s12035-016-0014-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schreibelt G, Musters RJP, Reijerkerk A, de Groot LR, van der Pol SMA, Hendrikx EML, et al. Lipoic acid affects cellular migration into the central nervous system and stabilazes blood-brain barrier integrity. J Immunol. 2006;177:2630–7. https://doi.org/10.4049/jimmunol.177.4.2630.
Ramirez SH, Fan S, Dykstra H, Rom S, Mercer A, Reichenbach NL, et al. Inhibition of glycogen synthase kinase 3β promotes tight junction stability in brain endothelial cells by half-life extension of occludin and claudin-5. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0055972.
Isla AG, Vázquez-Cuevas FG, Peña-Ortega F. Exercise prevents amyloid-β-induced hippocampal network disruption by inhibiting GSK3β activation. J Alzheimer’s Dis. 2016;52:333–43. https://doi.org/10.3233/JAD-150352.
Ramirez SH, Fan S, Zhang M, Papugani A, Reichenbach N, Dykstra H, et al. Inhibition of glycogen synthase kinase 3β (GSK3β) decreases inflammatory responses in brain endothelial cells. Am J Pathol. 2010;176:881–92. https://doi.org/10.2353/ajpath.2010.090671.
CAS
Article
PubMed
PubMed Central
Google Scholar
Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. In: Comprehensive Physiology. John Wiley & Sons, Inc.; 2012. p. 1143–211. https://doi.org/10.1002/cphy.c110025.
Book
Google Scholar
Lange-Asschenfeldt C, Kojda G. Alzheimer’s disease, cerebrovascular dysfunction and the benefits of exercise: From vessels to neurons. Exp Gerontol. 2008;43:499–504. https://doi.org/10.1016/j.exger.2008.04.002.
CAS
Article
PubMed
PubMed Central
Google Scholar
Intlekofer KA, Cotman CW. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis. 2013;57:47–55. https://doi.org/10.1016/j.nbd.2012.06.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Phillips C, Akif Baktir M, Das D, Lin B, Salehi A. The link between physical activity and cognitive dysfunction in Alzheimer disease. Phys Ther. 2015;95:1046–60. https://doi.org/10.2522/ptj.20140212.
Article
PubMed
PubMed Central
Google Scholar
Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res. 2013;2013:1–8. https://doi.org/10.1155/2013/657508.
Article
Google Scholar
Muscari A, Giannoni C, Pierpaoli L, Berzigotti A, Maietta P, Foschi E, et al. Chronic endurance exercise training prevents aging-related cognitive decline in healthy older adults: a randomized controlled trial. Int J Geriatr Psychiatry. 2010;25:1055–64. https://doi.org/10.1002/gps.2462.
Article
PubMed
PubMed Central
Google Scholar
Ten Brinke LF, Bolandzadeh N, Nagamatsu LS, Hsu CL, Davis JC, Miran-Khan K, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;49:248–54. https://doi.org/10.1136/bjsports-2013-093184.
Article
PubMed
PubMed Central
Google Scholar
Forbes SC, Forbes D, Forbes S, Blake CM, Chong LY, Thiessen EJ, et al. Exercise interventions for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst Rev. 2015;2015 https://doi.org/10.1002/14651858.CD011706.
Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61:1166–70. https://doi.org/10.1093/gerona/61.11.1166.
Article
PubMed
PubMed Central
Google Scholar
Shukla SK, Kumar S, Selvaraj P, Subba RV. Computerized maintenance management system for indigenously developed fighter aircraft inline with emerging trends. ARPN J Eng Appl Sci. 2014;9:500–4. https://doi.org/10.1073/pnas.1015950108.
Article
Google Scholar
Tu RH, Zeng ZY, Zhong GQ, Wu WF, Lu YJ, Bo ZD, et al. Effects of exercise training on depression in patients with heart failure: a systematic review and meta-analysis of randomized controlled trials. Eur J Heart Fail. 2014;16:749–57. https://doi.org/10.1002/ejhf.101.
Article
PubMed
Google Scholar
Rosenbaum S, Tiedemann A, Sherrington C, Curtis J, Ward PB. Physical activity interventions for people with mental illness: a systematic review and meta-analysis. J Clin Psychiatry. 2014;75:964–74. https://doi.org/10.4088/JCP.13r08765.
Article
PubMed
Google Scholar
Firth J, Cotter J, Elliott R, French P, Yung AR. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med. 2015;45:1343–61. https://doi.org/10.1017/S0033291714003110.
CAS
Article
PubMed
Google Scholar
Dauwan M, Begemann MJH, Heringa SM, Sommer IE. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr Bull. 2016;42:588–99. https://doi.org/10.1093/schbul/sbv164.
Article
PubMed
Google Scholar
Niebauer J, Maxwell AJ, Lin PS, Tsao PS, Kosek J, Bernstein D, et al. Impaired aerobic capacity in hypercholesterolemic mice: partial reversal by exercise training. Am J Physiol. 1999;276(4 Pt 2):H1346–54. https://doi.org/10.1152/ajpheart.1999.276.4.H1346.
CAS
Article
PubMed
Google Scholar
Niebauer J, Maxwell AJ, Lin PS, Wang D, Tsao PS, Cooke JP. NOS inhibition accelerates atherogenesis: reversal by exercise. Am J Physiol Hear Circ Physiol. 2003;285:H535–40. https://doi.org/10.1152/ajpheart.00360.2001.
CAS
Article
Google Scholar
Adams V, Niebauer J. Reversing heart failure-associated pathophysiology with exercise: what actually improves and by how much? Heart Fail Clin. 2015;11:17–28. https://doi.org/10.1016/j.hfc.2014.08.001.
Article
PubMed
PubMed Central
Google Scholar
Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2010;1:9–21. https://doi.org/10.1007/s13539-010-0007-1.
Article
PubMed
PubMed Central
Google Scholar
Wilson MG, Ellison GM, Cable NT. Basic science behind the cardiovascular benefits of exercise. Br J Sports Med. 2016;50:93–9. https://doi.org/10.1136/bjsports-2014-306596rep.
Article
PubMed
Google Scholar
Ziemann E, Zembroń-Lacny A, Kasperska A, Antosiewicz J, Grzywacz T, Garsztka T, et al. Exercise training-induced changes in inflammatory mediators and heat shock proteins in young tennis players. J Sport Sci Med. 2013;12:282–9.
Google Scholar
Ribeiro F, Alves AJ, Teixeira M, Miranda F, Azevedo C, Duarte JA, et al. Exercise training increases interleukin-10 after an acute myocardial infarction: a randomised clinical trial. Int J Sport Med. 2012;33:192–8. https://doi.org/10.1055/s-0031-1297959.
CAS
Article
Google Scholar
Lin R, Chen F, Wen S, Teng T, Pan Y, Huang H. Interleukin-10 attenuates impairment of the blood-brain barrier in a severe acute pancreatitis rat model. J Inflamm. 2018;15:15.
Article
CAS
Google Scholar
Eyre HA, Papps E, Baune BT. Treating depression and depression-like behavior with physical activity: An immune perspective. Front Psychiatry. 2013;4:3. https://doi.org/10.3389/fpsyt.2013.00003.
Article
PubMed
PubMed Central
Google Scholar
Flynn MG, McFarlin BK, Phillips MD, Stewart LK, Timmerman KL. Toll-like receptor 4 and CD14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol. 2003;95:1833–42. https://doi.org/10.1152/japplphysiol.00359.2003.
CAS
Article
PubMed
Google Scholar
McFarlin BK, Flynn MG, Campbell WW, Stewart LK, Timmerman KL. TLR4 is lower in resistance-trained older women and related to inflammatory cytokines. Med Sci Sports Exerc. 2005;37:1876–83. https://doi.org/10.1249/01.MSS.0000145465.71269.10.
McFarlin BK, Flynn MG, Campbell WW, Craig BA, Robinson JP, Stewart LK, et al. Physical activity status, but not age, influences inflammatory biomarkers and toll-like receptor 4. J GerontolA Biol Sci Med Sci. 2006;61:388–93. https://doi.org/10.1093/gerona/61.4.388.
Article
Google Scholar
Banchereau J, Steinman RM. Dendritic cells and the control of immunology. 1998. doi:https://doi.org/10.1038/32588.
Pasare C, Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Mech Lymph Act Immune Regul X. 2004;6:11–8. https://doi.org/10.1007/0-387-24180-9_2.
Article
Google Scholar
Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16:3–9. https://doi.org/10.1016/j.smim.2003.10.003.
CAS
Article
PubMed
Google Scholar
National Institute of Clinical Excellence. Depression in adults: the treatment and management of depression in adults | depression | Information for the public | NICE. 2009. http://www.nice.org.uk/guidance/cg90/ifp/chapter/depression.
Google Scholar
WHO. Fiscal policies for diet and the prevention of noncommunicable diseases. 2015. http://www.who.int/dietphysicalactivity/publications/fiscal-policies-diet-prevention/en/.
Google Scholar
Raja R, Rosenberg GA, Caprihan A. MRI measurements of blood-brain barrier function in dementia: a review of recent studies. Neuropharmacol. 2018;134:259–71. https://doi.org/10.1016/j.neuropharm.2017.10.034.
CAS
Article
Google Scholar