Skip to main content

Advertisement

Log in

Tryptophan, adenosine, neurodegeneration and neuroprotection

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

This review summarises the potential contributions of two groups of compounds to cerebral dysfunction and damage in metabolic disease. The kynurenines are oxidised metabolites of tryptophan, the kynurenine pathway being the major route for tryptophan catabolism in most tissues. The pathway includes quinolinic acid – an agonist at N-methyl-d-aspartate (NMDA) receptors, kynurenic acid – an antagonist at glutamate and nicotinic receptors, and other redox active compounds that are able to generate free radicals under many physiological and pathological conditions. The pathway is activated in immune-competent cells, including glia in the central nervous system, and may contribute substantially to delayed neuronal damage following an infarct or metabolic insult. Adenosine is an ubiquitous purine that can protect neurons by suppressing excitatory neurotransmitter release, reducing calcium fluxes and inhibiting NMDA receptors. The extent of brain injury is critically dependent on the balance between the two opposing forces of kynurenines and purines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht J, Wegrzynowicz M (2005) Endogenous neuroprotectants in ammonia toxicity in the central nervous system: facts and hypotheses. Metab Brain Dis 20:253–263

    PubMed  CAS  Google Scholar 

  • Andine P, Rudolphi KA, Fredholm BB, Hagberg H (1990) Effect of propentofylline (HWA285) in extracellular purines and excitatory amino acids in CA1 of rat hippocampus during transient ischemia. Br J Pharmacol 100:814–818

    PubMed  CAS  Google Scholar 

  • Arvin B, Neville LF, Pan J, Roberts PJ (1989) 2-Chloroadenosine attenuates kainic acid-induced toxicity within the rat striatum: relationship to release of glutamate and Ca2+ influx. Br J Pharmacol 98:225–235

    PubMed  CAS  Google Scholar 

  • Baratte S, Molinari A, Veneroni O, Speciale C, Benatti L, Salvati P (1998) Temporal and spatial changes of quinolinic acid immunoreactivity in the gerbil hippocampus following transient cerebral ischemia. Mol Brain Res 59:50–57

    PubMed  CAS  Google Scholar 

  • Bartrup JT, Stone TW (1990) Activation of NMDA receptor-coupled channels suppresses the inhibitory action of adenosine on hippocampal slices. Brain Res 530:330–334

    PubMed  CAS  Google Scholar 

  • Basile AS, Saito K, Almardini H, Record CO, Hughes RD, Harrison P, Williams R, Li Y, Heyes MP (1995) The relationship between plasma and brain quinolinic acid levels and the severity of hepatic-encephalopathy. Gastroenterology 108:818–823

    PubMed  CAS  Google Scholar 

  • Behan WMH, Stone TW (2002) Enhanced neuronal damage by co-administration of quinolinic acid and free radicals and protection by adenosine A2A receptor antagonists. Br J Pharmacol 135:1435–1442

    PubMed  CAS  Google Scholar 

  • Behan WMH, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760

    PubMed  CAS  Google Scholar 

  • Bell MJ, Kochanek PM, Heyes MP, Wisniewski SR, Sinz EH, Clark RSB, Blight AR, Marion DW, Adelson PD (1999) Quinolinic acid in the cerebrospinal fluid of children after traumatic brain injury. Crit Care Med 27:493–497

    PubMed  CAS  Google Scholar 

  • Bergqvist PBF, Heyes MP, Bugge M, Bengtsson F (1995) Brain quinolinic acid in chronic experimental hepatic-encephalopathy—effects of an exogenous ammonium acetate challenge. J Neurochem 65:2235–2240

    Article  PubMed  CAS  Google Scholar 

  • Bergqvist PBF, Heyes MP, Apelqvist G, Butterworth RF, Bengtsson F (1996) Brain extracellular quinolinic acid in chronic experimental hepatic encephalopathy as assessed by in vivo microdialysis: acute effects of L-tryptophan. Neuropsychopharmacology 15:382–389

    PubMed  CAS  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine site. Eur J Pharmacol 154:85–87

    PubMed  CAS  Google Scholar 

  • Blight AR, Saito K, Heyes MP (1993) Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury. Brain Res 632:314–316

    PubMed  CAS  Google Scholar 

  • Blight AR, Cohen TI, Saito K, Heyes MP (1995) Quinolinic acid accumulation and functional deficits following experimental spinal cord injury. Brain 118:735–752

    PubMed  Google Scholar 

  • Blight AR, Leroy EC Jr, Heyes MP (1997) Quinolinic acid accumulation in injured spinal cord: time course, distribution, and species differences between rat and guinea pig. J Neurotrauma 14:89–98

    PubMed  CAS  Google Scholar 

  • Butcher SP, Bullock R, Graham DI, McCulloch J (1990) Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 21:1727–1733

    PubMed  CAS  Google Scholar 

  • Chen JF, Huang ZH, Ma JY, Zhu JM, Moratalla R, Standaert D, Moskowitz MA, Fink JS, Schwarzschild MA (1999) A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200

    PubMed  CAS  Google Scholar 

  • Connick JH, Stone TW (1989) Quinolinic acid neurotoxicity: protection by intracerebral phenylisopropyl adenosine (PIA) and potentiation by hypotension. Neurosci Lett 101:191–196

    PubMed  CAS  Google Scholar 

  • Daval J-L, Von Lubitz DJKE, Deckert J, Redmond DJ, Marangos PJ (1989) Protective effect of cyclohexyladenosine A1-receptors, guanine nucleotide and forskolin binding sites following transient brain ischaemia: a quantitative autoradiographic study. Brain Res 491:212–226

    PubMed  CAS  Google Scholar 

  • De Mendonca A, Sebastiao AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurons by adenosine A(1) receptor activation. Neuroreport 6:1097–1100

    Article  PubMed  Google Scholar 

  • Dykens JA, Sullivan SG, Stern A (1987) Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem Pharmacol 36:211–217

    PubMed  CAS  Google Scholar 

  • Dykens JA, Sullivan SG, Stern A (1989) Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate. Biochem Pharmacol 38:1555–1562

    PubMed  CAS  Google Scholar 

  • Eastman CL, Guilarte TR (1989) Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line. Brain Res 495:225–231

    PubMed  CAS  Google Scholar 

  • Eastman CL, Guilarte TR (1990) The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 15:1101–1107

    PubMed  CAS  Google Scholar 

  • Espey MG, Moffett JR, Namboodiri MAA (1995) Temporal and spatial changes of quinolinic acid immunoreactivity in the immune system of lipopolysaccharide-stimulated mice. J Leukoc Biol 57:199–206

    PubMed  CAS  Google Scholar 

  • Espey MG, Chernyshev ON, Reinhard JF Jr, Namboodiri MAA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8:431–434

    PubMed  CAS  Google Scholar 

  • Galarraga E, Surmeier DJ, Kitai ST (1990) Quinolinate and kainate neurotoxicity in neostriatal cultures is potentiated by coculturing with neocortical neurons. Brain Res 512:269–276

    PubMed  CAS  Google Scholar 

  • Gao Y, Phillis JW (1994) CGS 15943, an adenosine A2 receptor antagonist, reduces cerebral ischemic injury in the mongolian gerbil. Life Sci 55:PL61–PL65

    PubMed  CAS  Google Scholar 

  • Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593–1596

    PubMed  CAS  Google Scholar 

  • Giulian D, Wendt E, Vaca K, Noonan CA (1993) The envelope glycoprotein of human immunodeficiency virus type-1 stimulates release of neurotoxins from monocytes. Proc Natl Acad Sci U S A 90:2769–2773

    Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischaemia. J Neurochem 49:227–231

    PubMed  CAS  Google Scholar 

  • Heron A, Lekiettre D, Le Peillet E, Lasbennes F, Seylaz J, Plotkine M, Boulu RG (1994) Effects of an A1 adenosine receptor agonist on the neurochemical, behavioural and histological consequences of ischaemia. Brain Res 641:217–224

    PubMed  CAS  Google Scholar 

  • Heyes MP, Lackner A (1990) Increased cerebrospinal fluid quinolinic acid, kynurenic acid and L-kynurenine in acute septicemia. J Neurochem 55:338–341

    PubMed  CAS  Google Scholar 

  • Heyes MP, Nowak TS Jr (1990) Delayed increases in regional brain quinolinic acid follow transient ischemia in the gerbil. J Cereb Blood Flow Metab 10:660–667

    PubMed  CAS  Google Scholar 

  • Heyes MP, Quearry BJ, Markey SP (1989) Systemic endotoxin increases L-tryptophan, 5-hydroxyindoleacetic acid, 3-hydroxykynurenine and quinolinic acid content of mouse cerebral-cortex. Brain Res 491:173–179

    PubMed  CAS  Google Scholar 

  • Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJP, Lackner A, Larsen SA, Lee K, Leonard HL, Markey SP, Martin A, Milstein S, Mouradian MM, Pranzatelli MR, Quearry BJ, Salazar A, Smith M, Straus SE, Sunderland T, Swedo SE, Tourtellotte WW (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurologic disease. Brain 115:1249–1273

    PubMed  Google Scholar 

  • Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert L-tryptophan into the neurotoxin quinolinic acid. Biochem J 320:595–597

    PubMed  CAS  Google Scholar 

  • Hiraku Y, Inoue S, Oikawa S, Yamamoto K, Tada S, Nishino K, Kawanishi S (1995) Aluminium-mediated oxidative damage to cellular and isolated dna by certain tryptophan-metabolites. Carcinogenesis 16:349–356

    PubMed  CAS  Google Scholar 

  • Holt DE, Washabau RJ, Djali S, Dayrell-Hart B, Drobatz KJ, Heyes MP, Robinson MB (2002) Cerebrospinal fluid glutamine, tryptophan, and tryptophan metabolite concentrations in dogs with portosystemic shunts. Am J Vet Res 63:1167–1171

    PubMed  CAS  Google Scholar 

  • Hosseinzadeh H, Stone TW (1998) Tolbutamide blocks postsynaptic but not presynaptic effects of adenosine on hippocampal CA1 neurons. J Neural Transm 105:161–172

    PubMed  CAS  Google Scholar 

  • Jalan R, Shawcross D, Davies N (2003) The molecular pathogenesis of hepatic encephalopathy. Int J Biochem Cell Biol 35:1175–1181

    PubMed  CAS  Google Scholar 

  • Jones PA, Smith RA, Stone TW (1998a) Protection against intrahippocampal kainate excitotoxicity by intracerebral administration of an adenosine A2A receptor antagonist. Brain Res 800:328–335

    PubMed  CAS  Google Scholar 

  • Jones PA, Smith RA, Stone TW (1998b) Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists. Neuroscience 85:229–237

    PubMed  CAS  Google Scholar 

  • Kerr SJ, Armati PJ, Brew BJ (1995) Neurocytotoxicity of quinolinic acid in human brain cultures. J Neurovirol 1:375–380

    PubMed  CAS  Google Scholar 

  • Kerr SJ, Armati PJ, Guillemin GJ, Brew BJ (1998) Chronic exposure of human neurones to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12:355–363

    PubMed  CAS  Google Scholar 

  • Khaspekov L, Kida E, Victorov I, Mossakowski MJ (1989) Neurotoxic effect induced by quinolinic acid in dissociated cell culture of mouse hippocampus. J Neurosci Res 22:150–157

    PubMed  CAS  Google Scholar 

  • Kim JP, Choi DW (1987) Quinolinate neurotoxicity in cortical cell culture. Neuroscience 23:423–432

    PubMed  CAS  Google Scholar 

  • Kitano T, Matsumura S, Seki T, Hikida T, Sakimura K, Nagano T, Mishina M, Nakanishi S, Ito S (2004) Characterization of N-methyl-D-aspartate receptor subunits involved in acute ammonia toxicity. Neurochem Int 44:83–90

    PubMed  CAS  Google Scholar 

  • Klejman A, Wegrzynowicz M, Szatmari EM, Mioduszewska B, Hetman M, Albrecht J (2005) Mechanisms of ammonia-induced cell death in rat cortical neurons: roles of NMDA receptors and glutathione. Neurochem Int 47:51–57

    PubMed  CAS  Google Scholar 

  • Kocki T, Dolinska M, Dybel A, Urbanska EM, Turski WA, Albrecht J (2002) Regulation of kynurenic acid synthesis in C6 glioma cells. J Neurosci Res 68:622–626

    PubMed  CAS  Google Scholar 

  • Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499

    PubMed  CAS  Google Scholar 

  • Kosenko E, Montoliu C, Giordano G, Kaminsky Y, Venediktova N, Buryanov Y, Felipo V (2004) Acute ammonia intoxication induces an NMDA receptor-mediated increase in poly(ADP-ribose) polymerase level and NAD(+) metabolism in nuclei of rat brain cells. J Neurochem 89:1101–1110

    PubMed  CAS  Google Scholar 

  • Latini S, Bordoni F, Pedata F, Corradetti R (1999) Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 127:729–739

    PubMed  CAS  Google Scholar 

  • Lau Y-S, Mouradian MM (1993) Protection against acute MPTP-induced dopamine depletion in mice by adenosine. J Neurochem 60:768–771

    PubMed  CAS  Google Scholar 

  • Lees GJ (1993) The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 114:119–122

    PubMed  CAS  Google Scholar 

  • MacGregor DG, Stone TW (1993) Inhibition by the adenosine analogue, (R-)-N6-phenylisopropyladenosine, of kainic acid neurotoxicity in rat hippocampus after systemic administration. Br J Pharmacol 109:316–321

    PubMed  CAS  Google Scholar 

  • MacGregor DG, Miller WJ, Stone TW (1993) Mediation of the neuroprotective action of R-phenylisopropyladenosine through a centrally located adenosine A1 receptor. Br J Pharmacol 110:470–476

    PubMed  CAS  Google Scholar 

  • MacGregor DG, Jones PA, Maxwell WL, Graham DI, Stone TW (1996) Prevention by a purine analogue of kainate-induced neuropathology in rat hippocampus. Brain Res 725:115–120

    PubMed  CAS  Google Scholar 

  • Matsusue E, Kinoshita T, Ohama E, Ogawa T (2005) Cerebral cortical and white matter lesions in chronic hepatic encephalopathy: MR-pathologic correlations. AJNR Am J Neuroradiol 26:347–351

    PubMed  Google Scholar 

  • Michaelis ML, Michaelis EK, Myers SL (1979) Adenosine modulation of synaptosomal dopamine release. Life Sci 24:2083–2092

    PubMed  CAS  Google Scholar 

  • Moffett JR, Espey MG, Gaudet SJ, Namboodiri MAA (1993) Antibodies to quinolinic acid reveal localization in select immune cells rather than neurones or astroglia. Brain Res 623:337–340

    PubMed  CAS  Google Scholar 

  • Moffett JR, Espey MG, Namboodiri MAA (1994) Antibodies to quinolinic acid and the determination of its cellular distribution within the rat immune system. Cell Tissue Res 278:461–469

    PubMed  CAS  Google Scholar 

  • Moffett JR, Els T, Espey MG, Walter SA, Streit WJ, Namboodiri MAA (1997) Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes. Exp Neurol 144:287–301

    PubMed  CAS  Google Scholar 

  • Monopoli A, Lozza G, Forloni A, Mattavelli A, Ongini E (1998) Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9:3955–3959

    PubMed  CAS  Google Scholar 

  • Moroni F, Lombardi G, Carlà V, Pellegrini D, Carassale GL, Cortesini C (1986a) Content of quinolinic acid and of other tryptophan-metabolites increases in brain-regions of rats used as experimental-models of hepatic-encephalopathy. J Neurochem 46:869–874

    PubMed  CAS  Google Scholar 

  • Moroni F, Lombardi G, Carla V, Pellegrini D, Carassale GJ, Cortesini C (1986b) Increase in the content of quinolinic acid in cerebrospinal-fluid and frontal-cortex of patients with hepatic-failure. J Neurochem 47:1667–1671

    PubMed  CAS  Google Scholar 

  • Nakagami Y, Saito H, Katsuki H (1996) 3-hydroxykynurenine toxicity on the rat striatum in vivo. Jpn J Pharmacol 71:183–186

    Article  PubMed  CAS  Google Scholar 

  • Nakai M, Qin ZH, Wang Y, Chase TN (1999) Free radical scavenger OPC-14117 attenuates quinolinic acid-induced NFκB activation and apoptosis in rat striatum. Mol Brain Res 64:59–68

    PubMed  CAS  Google Scholar 

  • Nakao N, Brundin P (1997) Effects of alpha-phenyl-t-butyl nitrone on neuronal survival and motor function following intrastriatal injections of quinolinate or 3-nitropropionic acid. Neuroscience 76:749–761

    PubMed  CAS  Google Scholar 

  • Namboodiri AMA, Venkateshan CNS, Narayanan R, Blinder K, Moffett JR, Gajdusek DC, Gravell M, Gibbs J (1996) Increased quinolinate immunoreactivity in the peripheral blood macrocytes/macrophages from SIV-infected monkeys. J Neurovirol 2:433–438

    PubMed  CAS  Google Scholar 

  • Nikbakht M-R, Stone TW (2001) Suppression of presynaptic responses to adenosine by activation of NMDA receptors. Eur J Pharmacol 427:13–25

    PubMed  CAS  Google Scholar 

  • Norenberg W, Wirkner K, Illes P (1997) Effect of adenosine and some of its structural analogues on the conductance of NMDA receptor channels in a subset of rat neostriatal neurons. Br J Pharmacol 122:71–80

    PubMed  CAS  Google Scholar 

  • O’Kane EM, Stone TW (1998) Interactions between A1 and A2 adenosine receptor-mediated responses in the rat hippocampus in vitro. Eur J Pharmacol 362:17–25

    PubMed  CAS  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci U S A 93:12553–12558

    PubMed  CAS  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    Article  PubMed  CAS  Google Scholar 

  • Ongini E, Adami M, Ferri C, Bertorelli R (1997) Adenosine A2A receptors and neuroprotection. Ann N Y Acad Sci 825:30–48

    PubMed  CAS  Google Scholar 

  • Ongini E, Monopoli A, Impagnatiello F, Fredduzzi S, Schwarzschild M, Chen JF (2001) Dual actions of A2A adenosine receptor antagonists on motor dysfunction and neurodegenerative processes. Drug Dev Res 52:379–386

    CAS  Google Scholar 

  • Pearson SJ, Reynolds GP (1991) Determination of 3-hydroxykynurenine in human brain and plasma by HPLC with electrochemical detection. Increased concentrations in hepatic encephalopathy. J Chromatogr 565:436–440

    PubMed  CAS  Google Scholar 

  • Pearson SJ, Reynolds GP (1992) Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci Lett 144:199–201

    PubMed  CAS  Google Scholar 

  • Pearson SJ, Meldrum A, Reynolds GP (1995) An investigation of the activities of 3-hydroxykynureninase and kynurenine aminotransferase in the brain in Huntington’s disease. J Neural Transm 102:67–73

    CAS  Google Scholar 

  • Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-γ, TNF-α and IFN-α. J Interferon Cytokine Res 17:589–595

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    PubMed  CAS  Google Scholar 

  • Phillis JW (1995) The effects of selective A1 and A2A adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 705:79–84

    PubMed  CAS  Google Scholar 

  • Pierri M, Vaudan E, Sager T, Englund U (2005) KW-6002 protects from MPTP induced dopaminergic toxicity in the mouse. Neuropharmacology 48:517–524

    PubMed  CAS  Google Scholar 

  • Popovich PG, Reinhard JF, Flanagan EM, Stokes BT (1994) Elevation of the neurotoxin quinolinic acid occurs following spinal cord trauma. Brain Res 633:348–352

    PubMed  CAS  Google Scholar 

  • Rao KVR, Panickar K, Jayakumar AR, Norenberg MD (2005a) Astrocytes protect neurons from ammonia toxicity. Neurochem Res 30:1311–1318

    PubMed  CAS  Google Scholar 

  • Rao KVR, Jayakumar AR, Norenberg MD (2005b) Role of oxidative stress in the ammonia-induced mitochondrial permeability transition in cultured astrocytes. Neurochem Int 47:31–38

    CAS  Google Scholar 

  • Regenold JT, Illes P (1990) Inhibitory adenosine A1-receptors on rat locus coeruleus neurones. An intracellular electrophysiological study. Naunyn Schmiedebergs Arch Pharmacol 341:225–231

    PubMed  CAS  Google Scholar 

  • Reinhard JF Jr (1998) Altered tryptophan metabolism in mice with herpes simplex virus encephalitis: increases in spinal cord quinolinic acid. Neurochem Res 23:661–665

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Pearson SJ (1989) Increased brain 3-hydroxykynurenine in Huntington’s disease. Lancet 2:979–980

    PubMed  CAS  Google Scholar 

  • Rios C, Santamaria A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16:1139–1143

    PubMed  CAS  Google Scholar 

  • Robinson MB, Heyes MP, Anegawa NJ, Gorry E, Djali S, Mellits ED, Batshaw ML (1992) Quinolinate in brain and cerebrospinal-fluid in rat models of congenital hyperammonemia. Pediatr Res 32:483–488

    PubMed  CAS  Google Scholar 

  • Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4:346–369

    PubMed  CAS  Google Scholar 

  • Saito K, Markey SP, Heyes MP (1992) Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience 51:25–39

    PubMed  CAS  Google Scholar 

  • Saito K, Markey SP, Heyes MP (1994) 6-Chloro-D,L-tryptophan,4-chloro-3-hydroxy-anthranilate and dexamethasone attentuate quinolinic acid accumulation in brain and blood following systemic immune activation. Neurosci Lett 178:211–215

    PubMed  CAS  Google Scholar 

  • Saran T, Hilgier W, Kocki T, Urbanska EM, Turski WA, Albrecht J (1998) Acute ammonia treatment in vitro and in vivo inhibits the synthesis of a neuroprotectant kynurenic acid in rat cerebral cortical slices. Brain Res 787:348–350

    PubMed  CAS  Google Scholar 

  • Saran T, Hilgier W, Urbanska EM, Turski WA, Albrecht J (2004) Kynurenic acid synthesis in cerebral cortical slices of rats with progressing symptoms of thioacetamide-induced hepatic encephalopathy. J Neurosci Res 75:436–440

    PubMed  CAS  Google Scholar 

  • Sardar AM, Bell JE, Reynolds GP (1995) Increased concentrations of the neurotoxin 3-hydroxykynurenine in the frontal cortex of HIV-1-positive patients. J Neurochem 64:932–935

    Article  PubMed  CAS  Google Scholar 

  • Scholz KP, Miller RJ (1991) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139–1150

    Google Scholar 

  • Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    PubMed  CAS  Google Scholar 

  • Schwarcz R, Okuno E, White RJ, Bird ED, Whetsell WO Jr (1988) 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc Natl Acad Sci U S A 85:4079–4081

    PubMed  CAS  Google Scholar 

  • Shahraki A, Stone TW (2004) Blockade of presynaptic adenosine A1 responses by nitric oxide and superoxide in rat hippocampus. Eur J Neurosci 20:719–728

    PubMed  Google Scholar 

  • Sheardown MJ, Knutsen LJS (1996) Unexpected neuroprotection observed with the adenosine A2A receptor agonist CGS21680. Drug Dev Res 39:108–114

    CAS  Google Scholar 

  • Sinz EH, Kochanek PM, Heyes MP, Wisniewski SR, Bell MJ, Clark RSB, Dekosky ST, Blight AR, Marion DW (1998) Quinolinic acid is increased in CSF and associated with mortality after traumatic brain injury in humans. J Cereb Blood Flow Metab 18:610–615

    PubMed  CAS  Google Scholar 

  • Southgate GS, Daya S, Potgieter B (1998) Melatonin plays a protective role in quinolinic acid-induced neurotoxicity in the rat hippocampus. J Chem Neuroanat 14:151–156

    PubMed  CAS  Google Scholar 

  • Spignoli G, Pedata F, Pepeu G (1984) A1 and A2 adenosine receptors modulate acetylcholine release from brain slices. Eur J Pharmacol 97:341–342

    PubMed  CAS  Google Scholar 

  • Stone TW (1993) The neuropharmacology of quinolinic acid and kynurenic acid. Pharmacol Rev 45:309–379

    PubMed  CAS  Google Scholar 

  • Stone TW (2000a) The development and therapeutic potential of kynurenic acid and kynurenine derivatives for CNS neuroprotection. Trends Pharmacol Sci 21:149–154

    PubMed  CAS  Google Scholar 

  • Stone TW (2000b) Inhibitors of the kynurenine pathway. Eur J Med Chem 35:179–186

    PubMed  CAS  Google Scholar 

  • Stone TW (2001) Kynurenines in the CNS: from endogenous obscurity to clinical relevance. Prog Neurobiol 64:185–218

    PubMed  CAS  Google Scholar 

  • Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72:411–412

    PubMed  CAS  Google Scholar 

  • Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    PubMed  CAS  Google Scholar 

  • Sung V, Venkateshan CN, Williamson L, Ward R, Espey M, Gibbs CJ Jr, Moffett JR, Namboodiri MAA (1997) Immune-electron microscopy reveals that the excitotoxin quinolinate is associated with the plasma membrane in human peripheral blood monocytes/macrophages. Cell Tissue Res 290:633–639

    PubMed  CAS  Google Scholar 

  • Tominaga K, Shibata S, Watanabe S (1992) A neuroprotective effect of adenosine A1-receptor agonists on ischemia-induced decrease in 2-deoxyglucose uptake in rat hippocampal slices. Neurosci Lett 145:67–70

    PubMed  CAS  Google Scholar 

  • von Lubitz DKEJ, Dambrosia JM, Redmond DJ (1989) Protective effect of cyclohexyladenosine in treatment of cerebral ischaemia in gerbils. Neuroscience 30:451–462

    Google Scholar 

  • von Lubitz DKJE, Lin RC-S, Jacobson KA (1995) Cerebral ischaemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287:295–302

    Google Scholar 

  • von Lubitz DJKE, Lin RCS, Bischofberger N, Beenhakker M, Boyd M, Lipartowska R, Jacobson KA (1999) Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist. Eur J Pharmacol 369:313–317

    Google Scholar 

  • Whetsell WO Jr, Schwarcz R (1989) Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system. Neurosci Lett 97:271–275

    PubMed  CAS  Google Scholar 

  • Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45:486–492

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Shindo I, Egawa B, Horiguchi K (1994) Kynurenic acid is decreased in cerebrospinal fluid of patients with infantile spasms. Pediatr Neurol 10:9–12

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, T.W., Forrest, C.M., Mackay, G.M. et al. Tryptophan, adenosine, neurodegeneration and neuroprotection. Metab Brain Dis 22, 337–352 (2007). https://doi.org/10.1007/s11011-007-9064-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-007-9064-3

Keywords

Navigation