Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol. 2012;99(1):81–91. https://doi.org/10.1016/j.pneurobio.2012.07.005.
CAS
Article
PubMed
Google Scholar
Cook EH Jr, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature. 2008;455(7215):919–23. https://doi.org/10.1038/nature07458.
CAS
Article
PubMed
Google Scholar
Deshpande A, Weiss LA. Recurrent reciprocal copy number variants: roles and rules in neurodevelopmental disorders. Dev Neurobiol. 2018;78(5):519–30. https://doi.org/10.1002/dneu.22587.
Article
PubMed
Google Scholar
Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG. Estimates of penetrance for recurrent pathogenic copy-number variations. Genet Med. 2013;15(6):478–81. https://doi.org/10.1038/gim.2012.164.
CAS
Article
PubMed
Google Scholar
Newman S, Hermetz KE, Weckselblatt B, Rudd MK. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet. 2015;96(2):208–20. https://doi.org/10.1016/j.ajhg.2014.12.017.
CAS
Article
PubMed
PubMed Central
Google Scholar
Fernandez BA, Roberts W, Chung B, Weksberg R, Meyn S, Szatmari P, et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet. 2010;47(3):195–203. https://doi.org/10.1136/jmg.2009.069369.
Article
PubMed
Google Scholar
Gillentine MA, Schaaf CP. The human clinical phenotypes of altered CHRNA7 copy number. Biochem Pharmacol. 2015;97(4):352–62. https://doi.org/10.1016/j.bcp.2015.06.012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Szafranski P, Schaaf CP, Person RE, Gibson IB, Xia Z, Mahadevan S, et al. Structures and molecular mechanisms for common 15q13.3 microduplications involving CHRNA7: benign or pathological? Hum Mutat. 2010;31(7):840–50. https://doi.org/10.1002/humu.21284.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lowther C, Costain G, Stavropoulos DJ, Melvin R, Silversides CK, Andrade DM, et al. Delineating the 15q13.3 microdeletion phenotype: a case series and comprehensive review of the literature. Genet Med. 2015;17(2):149–57. https://doi.org/10.1038/gim.2014.83.
Article
PubMed
Google Scholar
Ziats MN, Goin-Kochel RP, Berry LN, Ali M, Ge J, Guffey D, et al. The complex behavioral phenotype of 15q13.3 microdeletion syndrome. Genet Med. 2016;18(11):1111–8. https://doi.org/10.1038/gim.2016.9.
CAS
Article
PubMed
Google Scholar
Williams NM, Franke B, Mick E, Anney RJ, Freitag CM, Gill M, et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am J Psychiatry. 2012;169(2):195–204. https://doi.org/10.1176/appi.ajp.2011.11060822.
Article
PubMed
PubMed Central
Google Scholar
Makoff AJ, Flomen RH. Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup(15) syndromes. Genome Biol. 2007;8(6):R114. https://doi.org/10.1186/gb-2007-8-6-r114.
CAS
Article
PubMed
PubMed Central
Google Scholar
International Schizophrenia C. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–41. https://doi.org/10.1038/nature07239.
CAS
Article
Google Scholar
van Bon BW, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM, et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009;46(8):511–23. https://doi.org/10.1136/jmg.2008.063412.
Article
PubMed
Google Scholar
Al Ageeli E, Drunat S, Delanoe C, Perrin L, Baumann C, Capri Y, et al. Duplication of the 15q11-q13 region: clinical and genetic study of 30 new cases. Eur J Med Genet. 2014;57(1):5–14. https://doi.org/10.1016/j.ejmg.2013.10.008.
Article
PubMed
Google Scholar
Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology. 2015;96(Pt B):274–88.
CAS
Article
Google Scholar
Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1116/.
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 2011;3(6):a004317. Published 2011 Jun 1. https://doi.org/10.1101/cshperspect.a004317.
Deshpande A, Yadav S, Dao DQ, Wu ZY, Hokanson KC, Cahill MK, et al. Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Rep. 2017;21(10):2678–87. https://doi.org/10.1016/j.celrep.2017.11.037.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kathuria A, Nowosiad P, Jagasia R, Aigner S, Taylor RD, Andreae LC, et al. Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Mol Psychiatry. 2018;23(3):735–46. https://doi.org/10.1038/mp.2017.185.
CAS
Article
PubMed
Google Scholar
Wang P, Lin M, Pedrosa E, Hrabovsky A, Zhang Z, Guo W, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol Autism. 2015;6(1):55. https://doi.org/10.1186/s13229-015-0048-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lewis EMA, Meganathan K, Baldridge D, Gontarz P, Zhang B, Bonni A, et al. Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol Autism. 2019;10(1):51. https://doi.org/10.1186/s13229-019-0306-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry. 2015;20(11):1350–65. https://doi.org/10.1038/mp.2014.141.
CAS
Article
PubMed
Google Scholar
Woodbury-Smith M, Deneault E, Yuen RKC, Walker S, Zarrei M, Pellecchia G, et al. Mutations in RAB39B in individuals with intellectual disability, autism spectrum disorder, and macrocephaly. Mol Autism. 2017;8(1):59. https://doi.org/10.1186/s13229-017-0175-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
DeRosa BA, El Hokayem J, Artimovich E, Garcia-Serje C, Phillips AW, Van Booven D, et al. Convergent pathways in idiopathic autism revealed by time course transcriptomic analysis of patient-derived neurons. Sci Rep. 2018;8(1):8423. https://doi.org/10.1038/s41598-018-26495-1.
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu X, Campanac E, Cheung HH, Ziats MN, Canterel-Thouennon L, Raygada M, et al. Idiopathic autism: cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol Neurobiol. 2017;54(6):4507–23. https://doi.org/10.1007/s12035-016-9961-8.
CAS
Article
PubMed
Google Scholar
Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22(6):820–35. https://doi.org/10.1038/mp.2016.95.
CAS
Article
PubMed
Google Scholar
Germain ND, Chen PF, Plocik AM, Glatt-Deeley H, Brown J, Fink JJ, et al. Gene expression analysis of human induced pluripotent stem cell-derived neurons carrying copy number variants of chromosome 15q11-q13.1. Mol Autism. 2014;5:44.
Article
Google Scholar
Yin J, Chen W, Yang H, Xue M, Schaaf CP. Chrna7 deficient mice manifest no consistent neuropsychiatric and behavioral phenotypes. Sci Rep. 2017;7(1):39941. https://doi.org/10.1038/srep39941.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Xiao C, Indersmitten T, Freedman R, Leonard S, Lester HA. The duplicated alpha7 subunits assemble and form functional nicotinic receptors with the full-length alpha7. J Biol Chem. 2014;289(38):26451–63. https://doi.org/10.1074/jbc.M114.582858.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gillentine MA, Yin J, Bajic A, Zhang P, Cummock S, Kim JJ, et al. Functional consequences of CHRNA7 copy-number alterations in induced pluripotent stem cells and neural progenitor cells. Am J Hum Genet. 2017;101(6):874–87. https://doi.org/10.1016/j.ajhg.2017.09.024.
CAS
Article
PubMed
PubMed Central
Google Scholar
Donovan AP, Basson MA. The neuroanatomy of autism - a developmental perspective. J Anat. 2017;230(1):4–15. https://doi.org/10.1111/joa.12542.
Article
PubMed
Google Scholar
Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci. 2013;7:609.
Article
Google Scholar
Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Lake AM, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat Genet. 2019;51(1):106–16. https://doi.org/10.1038/s41588-018-0288-4.
CAS
Article
PubMed
Google Scholar
Kaplanis J, Samocha KE, Wiel L, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586(7831):757–62. https://doi.org/10.1038/s41586-020-2832-5.
Pain O, Pocklington AJ, Holmans PA, Bray NJ, O'Brien HE, Hall LS, et al. Novel insight into the etiology of autism spectrum disorder gained by integrating expression data with genome-wide association statistics. Biol Psychiatry. 2019;86(4):265–73. https://doi.org/10.1016/j.biopsych.2019.04.034.
CAS
Article
PubMed
PubMed Central
Google Scholar
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server issue):W214–20.
CAS
Article
Google Scholar
Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28(18):3442–4. https://doi.org/10.1093/nar/28.18.3442.
CAS
Article
PubMed
PubMed Central
Google Scholar
Maino B, Ciotti MT, Calissano P, Cavallaro S. Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci. 2014;15(4):5596–622. https://doi.org/10.3390/ijms15045596.
CAS
Article
PubMed
PubMed Central
Google Scholar
Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G, et al. Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol. 1991;11(6):3296–306. https://doi.org/10.1128/mcb.11.6.3296-3306.1991.
CAS
Article
PubMed
PubMed Central
Google Scholar
Torii T, Miyamoto Y, Nakamura K, Maeda M, Yamauchi J, Tanoue A. Arf6 guanine-nucleotide exchange factor, cytohesin-2, interacts with actinin-1 to regulate neurite extension. Cell Signal. 2012;24(9):1872–82. https://doi.org/10.1016/j.cellsig.2012.05.016.
CAS
Article
PubMed
Google Scholar
Munoz-Cobo JP, Sanchez-Hernandez N, Gutierrez S, El Yousfi Y, Montes M, Gallego C, et al. Transcriptional elongation regulator 1 affects transcription and splicing of genes associated with cellular morphology and cytoskeleton dynamics and is required for neurite outgrowth in neuroblastoma cells and primary neuronal cultures. Mol Neurobiol. 2017;54(10):7808–23. https://doi.org/10.1007/s12035-016-0284-6.
CAS
Article
PubMed
Google Scholar
Kalinowska M, Chavez AE, Lutzu S, Castillo PE, Bukauskas FF, Francesconi A. Actinin-4 governs dendritic spine dynamics and promotes their remodeling by metabotropic glutamate receptors. J Biol Chem. 2015;290(26):15909–20. https://doi.org/10.1074/jbc.M115.640136.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lopes-Ramos CM, Chen CY, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020;31(12):107795. https://doi.org/10.1016/j.celrep.2020.107795.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bocchi R, Egervari K, Carol-Perdiguer L, Viale B, Quairiaux C, De Roo M, et al. Perturbed Wnt signaling leads to neuronal migration delay, altered interhemispheric connections and impaired social behavior. Nat Commun. 2017;8(1):1158. https://doi.org/10.1038/s41467-017-01046-w.
CAS
Article
PubMed
PubMed Central
Google Scholar
Henderson MJ, Wires ES, Trychta KA, Richie CT, Harvey BK. SERCaMP: a carboxy-terminal protein modification that enables monitoring of ER calcium homeostasis. Mol Biol Cell. 2014;25(18):2828–39. https://doi.org/10.1091/mbc.e14-06-1141.
Article
PubMed
PubMed Central
Google Scholar
Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther. 1997;283(3):1396–411.
CAS
PubMed
Google Scholar
Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, et al. Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol. 2002;540(Pt 2):425–34. https://doi.org/10.1113/jphysiol.2001.013847.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zwart R, Strotton M, Ching J, Astles PC, Sher E. Unique pharmacology of heteromeric alpha7beta2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Eur J Pharmacol. 2014;726:77–86. https://doi.org/10.1016/j.ejphar.2014.01.031.
CAS
Article
PubMed
Google Scholar
St John PA. Cellular trafficking of nicotinic acetylcholine receptors. Acta Pharmacol Sin. 2009;30(6):656–62. https://doi.org/10.1038/aps.2009.76.
CAS
Article
PubMed
PubMed Central
Google Scholar
Miller DT, Shen Y, Weiss LA, Korn J, Anselm I, Bridgemohan C, et al. Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. J Med Genet. 2009;46(4):242–8. https://doi.org/10.1136/jmg.2008.059907.
CAS
Article
PubMed
Google Scholar
Krebs J, Agellon LB, Michalak M. Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: an integrated view of calcium signaling. Biochem Biophys Res Commun. 2015;460(1):114–21. https://doi.org/10.1016/j.bbrc.2015.02.004.
CAS
Article
PubMed
Google Scholar
Hakamata Y, Nakai J, Takeshima H, Imoto K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 1992;312(2-3):229–35. https://doi.org/10.1016/0014-5793(92)80941-9.
CAS
Article
PubMed
Google Scholar
Jellinger K, Armstrong D, Zoghbi HY, Percy AK. Neuropathology of Rett syndrome. Acta Neuropathol. 1988;76(2):142–58. https://doi.org/10.1007/BF00688098.
CAS
Article
PubMed
Google Scholar
McFadden K, Minshew NJ. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Front Hum Neurosci. 2013;7:671.
Article
Google Scholar
Wang Z, Li P, Wu T, Zhu S, Deng L, Cui G. Axon guidance pathway genes are associated with schizophrenia risk. Exp Ther Med. 2018;16(6):4519–26. https://doi.org/10.3892/etm.2018.6781.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lilja J, Ivaska J. Integrin activity in neuronal connectivity. J Cell Sci. 2018;131(12).
Carter MD, Shah CR, Muller CL, Crawley JN, Carneiro AM, Veenstra-VanderWeele J. Absence of preference for social novelty and increased grooming in integrin beta3 knockout mice: initial studies and future directions. Autism Res. 2011;4(1):57–67. https://doi.org/10.1002/aur.180.
Article
PubMed
PubMed Central
Google Scholar
Thanseem I, Nakamura K, Anitha A, Suda S, Yamada K, Iwayama Y, et al. Association of transcription factor gene LMX1B with autism. PLoS One. 2011;6(8):e23738. https://doi.org/10.1371/journal.pone.0023738.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guglielmi L, Servettini I, Caramia M, Catacuzzeno L, Franciolini F, D'Adamo MC, et al. Update on the implication of potassium channels in autism: K(+) channelautism spectrum disorder. Front Cell Neurosci. 2015;9:34.
Article
Google Scholar
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem. 2016;136(3):440–56. https://doi.org/10.1111/jnc.13403.
CAS
Article
PubMed
Google Scholar
Blueprint Genetics [Internet]. Neuronal Migration Disorder Panel. 2021. https://blueprintgenetics.com/tests/panels/malformations/neuronal-migration-disorder-panel/.
Kwan V, Unda BK, Singh KK. Wnt signaling networks in autism spectrum disorder and intellectual disability. J Neurodev Disord. 2016;8(1):45. https://doi.org/10.1186/s11689-016-9176-3.
Article
PubMed
PubMed Central
Google Scholar
Kalkman HO. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism. 2012;3(1):10. https://doi.org/10.1186/2040-2392-3-10.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bae SM, Hong JY. The Wnt signaling pathway and related therapeutic drugs in autism spectrum disorder. Clin Psychopharmacol Neurosci. 2018;16(2):129–35. https://doi.org/10.9758/cpn.2018.16.2.129.
CAS
Article
PubMed
PubMed Central
Google Scholar
Belichenko PV, Oldfors A, Hagberg B, Dahlstrom A. Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport. 1994;5(12):1509–13. https://doi.org/10.1097/00001756-199407000-00025.
CAS
Article
PubMed
Google Scholar
Marchetto MC, Brennand KJ, Boyer LF, Gage FH. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet. 2011;20(R2):R109–15. https://doi.org/10.1093/hmg/ddr336.
CAS
Article
PubMed
PubMed Central
Google Scholar
Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19(4):215–34. https://doi.org/10.1038/nrn.2018.16.
CAS
Article
PubMed
PubMed Central
Google Scholar
Oblak AL, Gibbs TT, Blatt GJ. Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem. 2010;114(5):1414–23. https://doi.org/10.1111/j.1471-4159.2010.06858.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ross PJ, Zhang WB, Mok RSF, Zaslavsky K, Deneault E, D'Abate L, et al. Synaptic dysfunction in human neurons with autism-associated deletions in PTCHD1-AS. Biol Psychiatry. 2020;87(2):139–49. https://doi.org/10.1016/j.biopsych.2019.07.014.
CAS
Article
PubMed
Google Scholar
Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;21(3):319–31 e8. https://doi.org/10.1016/j.stem.2017.07.009.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kessaris N, Magno L, Rubin AN, Oliveira MG. Genetic programs controlling cortical interneuron fate. Curr Opin Neurobiol. 2014;26:79–87. https://doi.org/10.1016/j.conb.2013.12.012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Han W, Sestan N. Cortical projection neurons: sprung from the same root. Neuron. 2013;80(5):1103–5. https://doi.org/10.1016/j.neuron.2013.11.016.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lambert de Rouvroit C, Goffinet AM. Neuronal migration. Mech Dev. 2001;105(1-2):47–56. https://doi.org/10.1016/S0925-4773(01)00396-3.
CAS
Article
PubMed
Google Scholar
Kriegstein AR, Noctor SC. Patterns of neuronal migration in the embryonic cortex. Trends Neurosci. 2004;27(7):392–9. https://doi.org/10.1016/j.tins.2004.05.001.
CAS
Article
PubMed
Google Scholar
Avino TA, Hutsler JJ. Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders. Brain Res. 2010;1360:138–46. https://doi.org/10.1016/j.brainres.2010.08.091.
CAS
Article
PubMed
Google Scholar
Piven J, Berthier ML, Starkstein SE, Nehme E, Pearlson G, Folstein S. Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am J Psychiatry. 1990;147(6):734–9. https://doi.org/10.1176/ajp.147.6.734.
CAS
Article
PubMed
Google Scholar
Robinson EB, Lichtenstein P, Anckarsater H, Happe F, Ronald A. Examining and interpreting the female protective effect against autistic behavior. Proc Natl Acad Sci U S A. 2013;110(13):5258–62. https://doi.org/10.1073/pnas.1211070110.
Article
PubMed
PubMed Central
Google Scholar
Sahakyan A, Kim R, Chronis C, Sabri S, Bonora G, Theunissen TW, et al. Human naive pluripotent stem cells model X chromosome dampening and X inactivation. Cell Stem Cell. 2017;20(1):87–101. https://doi.org/10.1016/j.stem.2016.10.006.
CAS
Article
PubMed
Google Scholar
Dandulakis MG, Meganathan K, Kroll KL, Bonni A, Constantino JN. Complexities of X chromosome inactivation status in female human induced pluripotent stem cells-a brief review and scientific update for autism research. J Neurodev Disord. 2016;8(1):22. https://doi.org/10.1186/s11689-016-9155-8.
Article
PubMed
PubMed Central
Google Scholar
Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(Database issue):D920–4. https://doi.org/10.1093/nar/gks1082.
CAS
Article
PubMed
Google Scholar
Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244–8. https://doi.org/10.1038/nature24265.
Article
PubMed
PubMed Central
Google Scholar
Strassler ET, Aalto-Setala K, Kiamehr M, Landmesser U, Krankel N. Age is relative-impact of donor age on induced pluripotent stem cell-derived cell functionality. Front Cardiovasc Med. 2018;5:4. https://doi.org/10.3389/fcvm.2018.00004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mahmoudi S, Brunet A. Aging and reprogramming: a two-way street. Curr Opin Cell Biol. 2012;24(6):744–56. https://doi.org/10.1016/j.ceb.2012.10.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Meganathan K, Lewis EMA, Gontarz P, Liu S, Stanley EG, Elefanty AG, et al. Regulatory networks specifying cortical interneurons from human embryonic stem cells reveal roles for CHD2 in interneuron development. Proc Natl Acad Sci U S A. 2017;114(52):E11180–E9. https://doi.org/10.1073/pnas.1712365115.
CAS
Article
PubMed
PubMed Central
Google Scholar
Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43(W1):W566–70. https://doi.org/10.1093/nar/gkv468.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hoffman GE, Schadt EE. variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics. 2016;17(1):483.
Article
Google Scholar
Meganathan K, Prakasam R, Baldridge D, Gontarz P, Zhang B, Urano F, et al. Alterations in neuronal physiology, development, and function associated with a common duplication of chromosome 15 involving CHRNA7. Gene Expression Omnibus. 2021. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse143908.