Effects of Las-infection on the leaf protein profile of pre-symptomatic and symptomatic grapefruit plants
There was no visible difference in leaf morphology between the uninfected control for pre-symptomatic (UP) plants and the infected pre-symptomatic (IP) plants but the uninfected control for symptomatic (US) plants was visibly different from the infected symptomatic (IS) plants (Figure 1). A total protein yield of over 10 mg g-1 was extracted from leaves and there was no significant difference in the total protein yield across treatments (Additional file 1: Table S1). A high resolution 2-DE separation of total leaf proteins from grapefruit plants was visualized in a pI range of 4–7 and Mr range of 10,000 -150,000 (Additional file 2: Figure S1). Using PDQuest analysis software, over 700 spots per gel and over 440 reproducible spots within replicate gels were detected (Additional file 1: Table S1). Out of 191 differentially produced spots detected by PDQuest analysis, mass spectrometry analysis via MALDI-TOF- or LC-MS identified 123, which according to identical protein matches and spot proximity on the gel was summarized into 97 spots (Figure 2). A magnified view of the profiles of identified spots in representative gels from each treatment group is shown in Additional file 3: Figure S2.
In certain instances more than one spot was matched to a given protein, which as previously suggested, could be due to a combination of factors including multimerism/protein isoforms, maturation state, degradation and/or post-translational modifications [15, 16]. Furthermore, although majority of the differential protein expression identified in this study was induced by Las infection, in certain instances, we observed a significant difference in protein expression between the uninfected control for pre-symptomatic (UP) plants and the uninfected control for symptomatic (US) plants (example see Table 1, spots 86 and 205). This could be due to developmental difference in leaf age between UP and US plants, which is supported by results from previous reports [22, 23].
Table 1
Other identified proteins in citrus grapefruit leaves that were down-accumulated in response to Las-infection
The differentially expressed 97 protein spots presented in Figure 2 matched to 69 proteins/peptides (Additional file 4: Table S2) and were broadly grouped into six categories according to putative physiological functions (Figure 3A) namely: (i) CO2 assimilation/photosynthesis-related (16.3%), (ii) redox homeostasis-related (9.2%), (iii) regulation/protein synthesis-related (18.4%), (iv) pathogen response-related (20.4%), (v) chaperones (8.2%), and (vi) energy/metabolisms-related (25.5%). Among the identified protein spots, the volumes of 27 spots significantly changed (16 up-accumulated and 11 down-accumulated) in infected pre-symptomatic (IP) plants compared to UP plants, while the volumes of 92 spots significantly changed (21 up-accumulated and 71 down-accumulated) in infected symptomatic (IS) plants compared to US plants (Figure 3B). Additionally, the volumes of 30 spots significantly changed (12 up-accumulated and 18 down-accumulated) in US plants compared to UP plants, while the volumes of 87 spots significantly changed (17 up-accumulated and 70 down-accumulated) in IS plants compared to IP plants (Figure 3B). The spots that were differentially produced according to treatment comparisons described in Figure 3B are presented in Additional file 5: Table S3. A ranking of the most increased or up-regulated to the most decreased or down-regulated protein in IP or IS plants compared to UP or US plants, respectively, shows that pathogen response-related proteins showed the most increase in fold change in response to Las infection while photosynthesis-related proteins showed the most decrease in response to Las infection (Figure 4). Average spot volumes separated by letters to show significant difference are presented in Additional file 6: Appendix S1, while the sequences of PMF-matched peptides per spot are provided in Additional file 7: Appendix S2.
Effects of Las-infection on the nutrient status of pre-symptomatic and symptomatic grapefruit plants
HLB symptoms are similar to those of Zn-deficiency [20] and the life expectancy of HLB-affected plants may be extendable by fertilizer application [21]. Additionally, plant nutrients are actively involved in gene regulation and several metabolically active proteins form co-enzymes with nutrients, which prompted our inquiry into the effects of HLB on the nutrient status of grapefruit plants in tandem with our proteomic analyses. In this study, Las infection was accompanied by a general reduction in the concentrations of Ca, Mg, Fe, Mn, Zn and Cu in leaves of grapefruit plants (Figure 5). However, the concentrations of Ca, Mg, and Mn were not significantly reduced in IP plants compared to UP plants but the concentrations of Fe, Zn and Cu showed significant 49%, 35% and 34% reductions, respectively, in IP plants compared to UP plants (Figure 5). This suggests an early inhibition of micronutrient availability in leaves of citrus plants during HLB disease development and is congruent with Zn-deficiency-like symptoms observed in HLB-affected plants [20]. Interestingly, the concentration of K was increased by 12% (P > 0.05) and 21% (P < 0.05) in IP and IS plants, respectively, compared to their corresponding control plants (Figure 5). Nutrient-disease interactions in plants have been well documented [19]. Low Ca in plant tissues was associated with susceptibility to macerating diseases caused by Erwinia carotovora, Fusarium solani, Pythium myriotylum, Rhizoctonia solani, Sclerotinia minor, and Sclerotium rolfsii[19]. Wheat tissues with higher Zn concentrations were shown to be less susceptible to spring blight [24]. Since the nutrients analyzed in this study are known to be directly involved in the regulation of plant metabolic processes, including protein expression, the potential consequences of Las-mediated effects on the nutrient status of grapefruit plants are further discussed below in relation with Las-mediated regulation of protein expression.
CO2Assimilation/photosynthesis
We observed a significant down-accumulation of ribulose-1, 5-bisphosphate carboxylase oxygenase (RuBisCO) (Table 2,spots 3, 28, 208 and 211), RuBisCO activase (Table 2, spots 49, 71, 72, and 101), carbonic anhydrase (Table 2, spots 126, 159), a photosystem (PS) II stability assembly factor HCF136 (Table 2, spot 164) in IS plants compared to US plants but not in IP plants compared to UP plants. This suggests that these proteins are not initially affected by Las-infection during early stage of HLB development. RuBisCO catalyzes the conversion of Ribulose-1, 5-bisphophate and inorganic CO2 to an unstable 6 carbon compound (3-keto-2-carboxyarabinitol-1, 5-bisphosphate) that disintegrates almost instantaneously into two molecules of glycerate-3-phosphate. Carbonic anhydrase catalyzes the rapid interconversion of carbon dioxide and water to bicarbonate and protons while RuBisCO activase catalyzes the rapid formation of the critical carbamate in the active site of RuBisCO.
Table 2
Photosynthesis- and Energy/Metabolisms-related citrus grapefruit leaf proteins that were down-accumulated in response to Las-infection
Our results agree with those of Albrecht and Bowman [13], which showed a significant Las-mediated reduction in the expression of photosynthesis-related genes transcripts such as chlorophyll A-B and photosystem II 5 kDa protein. Fan et al. [25] proposed that Las-induced inhibition of photosynthesis could be due to an accumulation of photosynthates such as sucrose and fructose, which might suppress photosynthetic activity via a negative feedback mechanism. Additionally, the general reduction in nutrient content due to Las infection can lead to a reduction in the production of “housekeeping” proteins as well as the cannibalization of proteins such as RuBisCO for nutrients [19]. During periods of biotic or abiotic stress the regulation of general protein production is usually skewed towards the production of stress-response related factors at the expense of “housekeeping” proteins [26]. The reducing energy generated in the light-dependent reactions of photosynthesis is also important in the reduction of sulfate and nitrate, which are necessary for protein biosynthesis and the Las-mediated inhibition of photosynthesis could play a role in the down-regulation of the expression levels of a diverse group of grapefruit leaf proteins (Table 2).
Furthermore, Las-infection was associated with a down-regulation of oxygen-evolving enhancer (OEE) proteins 1 and 2 (Table 2, spots 67, 91 and 214) as well as a PSI 9 kDa protein (Table 2, spot 180) in both IP and IS compared to the respective control plants. This suggests these proteins might be early targets during HLB disease development. OEE proteins 1 and 2 are subunits of the oxygen-evolving system of PSII and involved in stabilizing the Mn cluster [27]. However, unlike Fe, Zn and Cu, the elemental concentration of Mn was not significantly reduced in IP plants compared to UP plants (Figure 5), which suggests that a mechanism other than a canonical response to HLB-mediated reduction in nutrient availability might be associated with the early down-regulation of OEE proteins after Las-infection. Pathogens have been suggested to oxidize Mn from the reduced, plant available form, to the oxidized, non-available form as a virulence mechanism and isolates of Gaeumannomyces graminis and Magnaporthe grisea that cannot oxidize Mn have been shown to be avirulent [28]. HLB-affected trees generally show leaf yellowing (chlorosis) which is likely due to a reduction in chlorophyll biosynthesis [29, 30] and Mg is important in chlorophyll biosynthesis. Thus, a Las-mediated reduction of the Mg content together with a reduction in Fe content of leaves of grapefruit plants (Figure 5) could play a role in HLB-associated chlorosis.
Energy/metabolism
There was a general Las-mediated down-accumulation of energy production and metabolism-related proteins including ATP synthase beta subunit (Table 2, spots 106 and 134), sedoheptulose-1, 7-bisphosphatase (Table 2, spot 70), beta-tubulin (Table 2, spot 75), pyruvate dehydrogenase (Table 2, spot 130), alcohol dehydrogenase (Table 2, spot 132), and malate dehydrogenase (Table 2, spot 191) especially in IS plants compared to US plants. Interestingly, we observed a significant up-accumulation of granule-bound starch synthase (Table 3, spots 29, 33, 61) in IP and IS plants compared to the respective control plants. Several enzymes important in energy production and metabolism possess Fe-S clusters and the production of these proteins could be limited under reduced Fe availability as observed in this study (Figure 5). Additionally, Fe-S proteins act as Fe reservoirs in the cell and their degradation could be facilitated to release Fe [31].
Table 3
Citrus grapefruit leaf proteins that were up-accumulated in response to Las-infection
The accumulation of starch in plant tissues during HLB disease development has been previously demonstrated [25, 32, 33] and we earlier discussed our observation of a Las-mediated down-regulation of photosynthesis-related proteins. In plants, the surplus carbohydrates (sugars) produced during photosynthesis is stored as starch. Thus, an HLB-mediated inhibition of downstream metabolic pathways could contribute to starch accumulation in citrus plants and starch accumulation could result in an inhibition of photosynthesis via a negative feed-back mechanism. The transcriptomic studies by Albrecht and Bowman [13] and by Fan et al. [34] showed a similar Las-mediated inverse relationship between the expression of gene transcripts involved in starch anabolism with those associated with photosynthesis in citrus plants. However, a similar study by Kim et al. [4] only demonstrated a Las-mediated up-regulation of starch-anabolism-related gene transcripts and no significant effect on photosynthesis-related gene transcripts in HLB-affected sweet orange plants. Furthermore, a proteomic study by Fan et al. [35] failed to identify a Las-mediated effect on starch anabolism- or photosynthesis-related proteins in HLB-affected sweet orange plants. Thus, our present study is the first to simultaneously identify the proteomic mechanisms potentially involved in Las-mediated up-regulation of starch accumulation when accompanied by a down-regulation of photosynthesis in HLB-affected citrus plants.
Additionally, while the major HLB-induced starch anabolism-related gene transcript detected by Albrecht and Bowman [13] and Kim et al. [4] were those coding for the large subunit of ADP-glucose pyrophosphorylase (ADPase), the major HLB-induced starch anabolism-related protein detected in our present study was a granule-bound starch synthase. Starch is composed of two distinct polymers: amylopectin and amylose. Amylopectin consists of long chains of (1, 4)-linked α-D-glucopyranosyl units with extensive branching resulting from (1–6) linkages, while amylose is a relatively linear molecule of (1, 4)-linked α-D-glucopyranosyl units [36]. Starch biosynthesis is controlled by four major enzymes namely: ADPase, starch synthase, granule-bound starch synthase, and starch debranching enzyme. ADPase is the rate-limiting enzyme, and catalyzes the ATP-dependent interconversion of glucose-1-phosphate to ADP-glucose. ADP-glucose is then polymerized into amylopectin by multiple isoforms of starch synthase or to amylose by granule-bound starch synthase [37]. The extensive branching of amylopectin is the result of the balanced activities of starch-branching and -debranching enzymes. Thus, the result from our present study suggests that of the four starch biosynthesis-associated enzymes, granule-bound starch synthase is the most post-transcriptionally up-regulated protein during the early stage of Las infection in grapefruit.
Furthermore, granule-bound starch synthase requires K for activation [38] which might explain our observation of a 12% (P > 0.05) and 21% (P < 0.05) increase in IP and IS plants, respectively, compared to the respective control plants (Figure 5). Pathogen-mediated disruption of membrane permeability could lead to electrolyte leakage [19], which could be a virulence mechanism by Las to induce host K accumulation in order to sustain increased starch accumulation, thus providing a steady source of carbon and other nutrition for this phloem-limited pathogen while the host cells are deprived of these nutrients. This hypothesis is consistent with our observation of Las-mediated up-accumulation of lectin-like proteins (discussed later). The disruption of K balance could also lead to guard cell malfunction and arrest of transpiration limiting nutrient uptake as well as CO2 assimilation/photosynthesis [39]. To the best of our knowledge this study is the first to show a direct relationship between the accumulation of K nutrient and accumulation of granule-bound starch synthase in citrus leaves in response to Las infection, which might suggest a signature pathophysiological response of citrus plants to Las infection.
Pathogen response
We showed that Las-infection resulted in an up-regulation of a PR-4 type protein (Table 3, spot 179), chitinases (Table 3, spots 41, 43, 66, 88, 92, 124, and 160), lectin-related proteins (Table 3, spots 39 and 44), miraculin-like proteins (Table 3, spots 153, 156, 181, 187, 202, and 203), and a chloroplastic light/drought-induced stress protein (Table 3, spot 14) in IP and IS plants compared to their respective control plants. We also identified a CAP 160 protein (Table 3, spot 141) which was up-accumulated in IP plants compared to UP plants but was undetected in US or IS plants. These observations are generally consistent with those from previous reports [14, 35]. However, our identification of a Las-mediated up-regulation of a CAP 160 protein and a chloroplastic light/drought-induced stress protein, which are uncharacterized proteins, is novel.
The function of CAP160 proteins in plants is obscure but the protein has been associated with drought-, desiccation- and cold-stress tolerance [40]. Thus, our observation of an early Las-mediated up-regulation of a CAP 160 protein and a chloroplastic light/drought-induced stress protein suggest attempts by the host plant to mitigate a possible disruption of the water balance by Las via a disrupted transpiration stream as earlier postulated.
Pathogenesis-related (PR) proteins are plant proteins that are induced in response to pathogen attack. However, several studies suggest that these proteins can also be induced by a variety of abiotic stresses, such as wounding and exposure to chemicals or heavy metals [26, 41–43]. The PR-4 family of PR proteins consists of class I and class II chitinases, which differ by the presence (class I) or absence (class II) of a conserved N-terminal cysteine-rich domain corresponding to the mature hevein, a small antifungal protein isolated from rubber tree (Hevea brasiliensis) latex [44].
Lectin-like proteins are involved in vascular tissue differentiation [45] and are associated with the plugging of phloem sieve plates in response to wounding and defense against pathogens and insects [46]. Accumulation of Phloem protein 2 (PP2), a lectin-like protein, at the sieve plates together with phloem necrosis and blockage of the translocation stream was demonstrated by Kim et al. [4] and Achor et al. [47] in HLB-affected citrus plants. Furthermore, the deposition of PP2 with callose at the sieve plates played a role in the recovery of apple trees from apple proliferation disease caused by the phloem-limited pathogen ‘Candidatus Phytoplasma mali’ [48]. Las, a phloem-limited bacterium, might induce the production of lectin-related proteins in host plants in order to inhibit phloem flow and accumulate photosynthates to nourish further bacterial growth as previously suggested. On the other hand host plants might induce the production of lectin-like proteins as a defensive attempt to prevent the spread of Las by sealing off the sieve tubes. Additionally studies have demonstrated that lectin-like proteins are able to interact with RNA molecules, are involved in the long-distance trafficking of macromolecules and may play a role in long-distance signaling in response to infection by plant pathogens [49, 50].
In agreement with our results, a proteomics study by Fan et al. [35] also showed a Las-mediated up-regulation of miraculin-like proteins and gene transcripts in sweet orange plants. Recently, two distinct miraculin-like proteins, RlemMLP1 and RlemMLP2, were characterized in rough lemon (Citrus jambhiri Lush), and shown to have protease inhibitor activities as well as being involved in defense against pathogens [51]. During the development of citrus sudden death (CSD) disease, a miraculin-like protein was suppressed in susceptible plants but not in tolerant plants [52]. Increased levels of PR proteins as well as miraculin-like proteins was observed in leaves of C. clementina plants after infestation by the spider mite Tetranychus urticae or exposure to methyl jasmonate [53].
Taken together, 20.4% of the differentially expressed protein spots identified in this study matched to pathogen response-related proteins (Figure 3A), which were all up-regulated in grapefruit plants in response to Las infection (Table 3). However, the concerted up-regulation of these pathogen response-related proteins was evidently not sufficient to hinder HLB development. Thus, the development/engineering of citrus plants that constitutively express these stress-response related proteins could help reduce susceptibility to Las infection [14]. Additionally, the production of these proteins in pre-symptomatic plants could be exploited to develop novel/improved serological diagnostic methods for early identification of HLB-affected plants.
Redox homeostasis
Redox-homeostasis-related proteins are usually involved in the prevention of oxidative stress, which is induced by reactive oxygen species (ROS). ROS are by-products of electron transport and redox reactions from metabolic processes such as photosynthesis and respiration. The production of ROS is markedly increased under conditions of biotic or abiotic stress [54, 55]. We observed that Las-infection up-regulated the production of peroxiredoxins (Table 3, spot 34) and Cu/Zn superoxide dismutase (Table 3, spot 119) in IP and IS plants compared to their respective control plants. Additionally, we observed a Las-mediated up-regulation of a 2Fe-2S ferredoxin-like protein particularly in IP plants compared to UP plants.
Antioxidants, such as superoxide dismutase (SOD), are among the most potent in nature in protecting living systems against oxidative stress. While the role of Cu/Zn SOD in HLB disease development in citrus plants has been previously demonstrated [14, 35], this study provides novel evidence for the potential involvement of two other redox homeostasis-related proteins: peroxiredoxins and an uncharacterized 2Fe-2S ferredoxin-like protein. ROS are produced sequentially: superoxide (O2¯) is the first reduction product of ground state oxygen and it can undergo spontaneous or SOD-catalyzed dismutation to H2O2, which is the second reactive product. Although, H2O2 is less reactive than superoxide, it is very diffusible and directly inactivates key cellular processes. Peroxiredoxins are a family of thiol-based peroxidases which catalyze the detoxification of H2O2 and other peroxides within living systems [56, 57]. Interestingly, ascorbate peroxidase (Table 1, spots 128 and 161) and catalase (Table 1, spot 209), which are very important components of H2O2 detoxification [58], were down-regulated in response to Las-infection suggesting that peroxiredoxins might be preferentially recruited to help dissipate oxidative stress during HLB disease development.
Besides ascorbate peroxidase and catalase, we also observed that Las-infection resulted in a significant down-regulation of other redox homeostasis-related proteins such as a putative thioredoxin (Table 1, spot 121), coproporphyrinogen III oxidase (Table 1, spot 188), isoflavone reductase (Table 1, spot 189), and cinnamoyl-CoA reductase (Table 1, spot 205) particularly in IS plants compared to US plants. The reduction in antioxidative protein production could be a consequence of Las-mediated reduction in the plant nutrient content (Figure 5). Rellán-Álvarez et al. [59] showed a significant down-regulation in the production of antioxidants in Beta vulgaris due to Fe-deficiency. Albrecht and Bowman [14] suggested that their observed Las-mediated up-regulation of several gene transcripts for a Zn transporter 5 precursor (ZIP5) in ‘Cleopatra’ mandarin leaves was likely an attempt of the host to increase the uptake of Zn to potentially support an up-regulation of Cu/Zn SOD in response to HLB-induced deficiency. Furthermore, Albrecht and Bowman [14] identified 326 genes which were significantly up-regulated in a Las-susceptible citrus genotype compared to 17 genes which were significantly up-regulated in a Las-tolerant citrus hybrid. They also showed a significant over-expression of 559 transcripts including several with stress-response related functions such as oxidoreductase, Cu/Zn SOD and isoflavone reductase in the leaves of the Las-tolerant citrus hybrid compared with leaves of the Las-susceptible citrus genotype irrespective of Las-infection. We therefore suggest that the susceptibility of grapefruit plants to HLB might be associated with the inability of the plants to constitutively express their repertoire of antioxidants to mitigate the debilitating effects of Las-mediated ROS production.
Regulation/Protein synthesis
Considering the general physiological decline that accompanies HLB development, it is not surprising that proteins associated with regulation/protein synthesis including such as a 31 kDa ribonucleoprotein (Table 1, spot 16), EF-Tu (Table 1, spot 58), glutamine synthetase (Table 1, spots 100 and 105), an ATP-dependent zinc metalloprotease (Table 1, spot 116), a serine-type peptidase (Table 1, spot 165), nucleoside diphosphate kinase 1 (Table 1, spot 149), and alanine aminotransferase 2 (Table 1, spot 198), were markedly repressed by Las especially in IS plants compared to US plants. Interestingly, we observed a significant Las-mediated down-regulation of a transcription factor homolog (Btf3-like) protein (Table 1, spot 152) and S-adenolsyl-L-methionine synthetase (Table 1, spot 170) in IP and IS plants compared to control plants, suggesting that these proteins might be early targets of Las pathogenesis or an early susceptibility response by grapefruit during HLB development.
The RNA polymerase B transcriptional factor 3 (Btf3) was demonstrated to be associated with apoptosis in mammalian cells [44, 60] but its actual function in plants is not well understood. However, recently, Huh et al. [61] showed that silencing of Btf3 protein expression in Capsicum annuum and Nicotiana benthamiana plants led to reduced hypersensitive response (HR) cell death and decreased expression of some HR-associated genes. HR cell death upon pathogen infection has been described as a strategy devised by plants for inhibiting pathogen spread and obtaining systemic acquired resistance against further infection [62, 63]. Thus, an early Las-mediated reduction in the production of a Btf3-like protein in grapefruit plants would have facilitated the spread of the bacterium within the host.
S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. AdoMet is an important methyl group donor utilized in most transmethylation reactions, which play vital roles in the synthesis of lipids, nucleic acids, proteins, and other products of secondary metabolism. Significant reductions in SAMS abundance in plants has been associated with abiotic stress particularly salt stress [64, 65], and Hua et al. [66] showed that the expression of a Glycine soja SAMS gene in alfalfa (Medicago sativa L) plants enhanced alfalfa’s tolerance to salt stress. Thus, the Las-mediated increase in the concentration of K in IP plants compared to UP plants (Figure 5) could induce osmotic stress similar to that caused by salt stress and ultimately resulting in an early Las-mediated down-regulation of SAMS.
Chaperones
Molecular chaperones [e.g. heat shock proteins (HSPs), chaperonins and peptidyl-prolyl cis-trans isomerases] are proteins involved in protein folding, refolding, assembly, re-assembly, degradation and translocation [67–70]. It is, therefore, not surprising that the broad Las-mediated down-regulation of proteins associated with regulation/protein synthesis was accompanied by a corresponding down-regulation in the expression levels of chaperones including peptidyl-prolyl cis-trans isomerase (Table 1, spot 45), heat shock proteins (Table 1, spots 30, 86, 111) and chaperonin-60 (Table 1, spots 81 and 140) especially in IS plants compared to US plants [71].