Skip to main content
Log in

Comparative Transcriptomic and Metabolomic Profiling of Grapevine Leaves (cv. Kyoho) upon Infestation of Grasshopper and Botrytis cinerea

  • Original Article
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Grapes (Vitis sp.) are susceptible to infection by grasshopper and fungus that lead to damaging productivity and economic losses. In this study, we infected the young and old leaf of grapevine by Acrida chinensis and Botrytis cinerea and combined the metabolomic and transcriptomic analysis to comprehend the infection-mediated molecular and metabolic responses. Results indicated that the metabolic reprogramming of lipid, proline, and carbohydrate metabolism is necessary for the biosynthesis of specialized metabolites, which are involved in grapevine defense response. Moreover, the resistance mechanisms of grapevine induced by grasshopper and Botrytis required the hormones crosstalk of abscisic acid (ABA), salicylic acid (SA), ethylene (ETH), brassinosteroid (BR), and jasmonic acid (JA). We also identified the different genes involved in resistance to pathogen and insect attack in transcriptional levels, which encoded pathogenesis-related proteins (PRs), disease resistance proteins (RPS), calcium-binding proteins (CMLs), WRKY transcription factor, abscisic acid-insensitive (ABI), brassinosteroid insensitive 1 (BAK1), ethylene-responsive transcription factor (ERF), leucine-rich repeat receptor-like protein kinases (LRRs), zinc finger protein (ZAT10), chitinase 5, and E3 ubiquitin-protein ligase PUB23 in infected leaves. Furthermore, we nominated various infection-related metabolic biomarkers, including glutathione, proline, aspartyl-L-proline, adenine, histidine, and arginine, that has major effects on the tolerance of leaf-damaging insects and pathogens. Taken together, our research results clarify that there are differences in the defense mechanisms of old leaves and young leaves that lead to different biological stress tolerance and provide deeper insights into grapevine regulatory network mediating defense response against infection caused by grasshopper and B. cinerea, and uncover the resistance mechanisms for functional genomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data sets supporting the conclusions of this article are included in this article and in its additional files.

Abbreviations

ABA:

Abscisic acid

ABI:

Abscisic acid-insensitive

BAK1:

Brassinosteroid insensitive 1

BR:

Brassnisteroid

CMLs:

Calcium-binding proteins

DEGs:

Differentially expressed genes

ELISA:

Enzyme-linked immunosorbent assay

ERF:

Ethylene-responsive transcription factor

ETH:

Ethylene

ETI:

Effector triggered immunity

F3M:

Flavonoid 3-monooxygenase

FAO:

Food and Agriculture Organization

FPKM:

Fragments per kilobase of transcript per million mapped reads

GO:

Gene ontology

HAMPs:

Herbivory- and pathogen- or microbial-associated

JA:

Jasmonic acid

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LCMS:

Liquid chromatography-mass spectrometry

LPO:

Peroxidation

LRRs:

Leucine-rich repeat receptor-like protein kinases

MDA:

Malondialdehyde

OCN:

Old leaf control

ODT:

Old leaf affected by pathogen

OIT:

Old leaf infected by insect

PCA:

Principal component analysis

PRRs:

Pattern recognition receptors

PRs:

Pathogenesis-related proteins

PTI:

PAMP-triggered immunity

qRT-PCR:

Quantitative real-time PCR

RPS:

Disease resistance proteins

SA:

Salicylic acid

SOD:

Superoxide dismutase

TF:

Transcription factor

YCN:

Young leaf control

YDT:

Young leaf affected by pathogen

YIT:

Young leaf infected by insect

ZAT10:

Zinc finger protein

References

  • Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  CAS  PubMed  Google Scholar 

  • Agudelo-Romero P, Erban A, Rego C, Carbonellbejerano P, Nascimento T, Sousa L, Martínezzapater JM, Kopka J, Fortes AM (2015) Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J Exp Bot 66:1769–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ait Barka E, Eullaffroy P, Clément C, Vernet G (2004) Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep 22:608–614

    Article  CAS  PubMed  Google Scholar 

  • Appel HM, Fescemyer H, Ehlting J, Weston D, Rehrig E, Joshi T, Xu D, Bohlmann J, Schultz J (2014) Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Front Plant Sci 5:565

    PubMed  PubMed Central  Google Scholar 

  • Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C (2002) The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal : for Cell and Molecular Biology 30:361–371

    Article  CAS  Google Scholar 

  • Belkhadir Y, Jaillais Y, Epple P, Balsemão-Pires E, Dangl JL, Chory J (2012) Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302

    Article  CAS  PubMed  Google Scholar 

  • Bournonville CF, Díaz-Ricci JC (2011) Quantitative determination of superoxide in plant leaves using a modified NBT staining method. Phytochemical Analysis : PCA 22:268–271

    Article  PubMed  CAS  Google Scholar 

  • Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL (2009) Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol 150:1434–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. J Exp Bot 62:5037–5050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • De CK, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BP, De CB (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant, Cell Environ 36:1992–2007

    Google Scholar 

  • De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BP, De Coninck B (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant, Cell Environ 36:1992–2007

    Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Devi J, Bhatia S, Alam M (2019) Abiotic elicitors influence antioxidative enzyme activities and shelf life of carrot during storage under refrigerated conditions. J Plant Growth Regul 38

  • Du C, Shen F, Li Y, Zhao Z, Xu X, Jiang J, Li J (2021) Effects of salicylic acid, jasmonic acid and reactive oxygen species on the resistance of Solanum peruvianum to Meloidogyne incognita. Scientia Horticulturae 275:109649

    Article  CAS  Google Scholar 

  • Fang W, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Science : an International Journal of Experimental Plant Biology 158:71–76

    Article  CAS  Google Scholar 

  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157-1161

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadjev I, Stone JM, Gechev TS (2015) Chapter 3: programmed cell death in plants : new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144

  • Grant MR, Jones JD (2009) Hormone (dis) harmony moulds plant health and disease. Science 324:750–752

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Haider M, Khan N, Nasim M, Jiu S, Fiaz M, Zhu X, Zhang K, Fang J (2018) Transcriptome sequence analysis elaborates a complex defensive mechanism of grapevine (Vitis vinifera L.) in response to salt stress. Int J Mol Sci 19:4019

  • Haider MS, Kurjogi MM, Khalil-Ur-Rehman M, Fiaz M, Pervaiz T, Jiu S, Haifeng J, Chen W, Fang J (2017a) Grapevine immune signaling network in response to drought stress as revealed by transcriptomic analysis. Plant Physiol Biochem 121:187–195

    Article  CAS  PubMed  Google Scholar 

  • Haider MS, Zhang C, Kurjogi MM, Pervaiz T, Zheng T, Zhang C, Lide C, Shangguan L, Fang J (2017b) Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis. Sci Rep 7:13134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hana N, Friederike B, Anne-Christin DR, Jürgen Z (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Google Scholar 

  • Heuberger AL, Broeckling CD, Kirkpatrick KR, Prenni JE (2014a) Application of nontargeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley. Plant Biotechnol J 12:147–160

    Article  CAS  PubMed  Google Scholar 

  • Heuberger AL, Robison FM, Lyons SM, Broeckling CD, Prenni JE (2014b) Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Front Plant Sci 5:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang T, Jander G, de Vos M (2011) Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry 72:1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Choi DS, Kim NH, Kim DS, Hwang BK (2014) The pepper cysteine/histidine-rich DC1 domain protein CaDC1 binds both RNA and DNA and is required for plant cell death and defense response. New Phytol 201:518–530

    Article  CAS  PubMed  Google Scholar 

  • Irvin NA, Bistline-East A, Hoddle MS (2016) The effect of an irrigated buckwheat cover crop on grape vine productivity, and beneficial insect and grape pest abundance in southern California. Biol Control 93:72–83

    Article  Google Scholar 

  • Jeandet P, Bessis R, Sbaghi M, Meunier P (1995) Production of the phytoalexin resveratrol by grapes as a response to botrytis attack under natural conditions. J Phytopathol 143:135–139

    Article  CAS  Google Scholar 

  • Johnson ET, Dowd PF, Liu ZL, Musser RO (2011) Comparative transcription profiling analyses of maize reveals candidate defensive genes for seedling resistance against corn earworm. Mol Genet Genomics 285:517–525

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The Plant Immune System Nature 444:323

    CAS  PubMed  Google Scholar 

  • Keller M, Viret O, Cole M (2003) Botrytis cinerea infection in grape flowers: defense reaction, latency, and disease expression. Phytopathology 93:316–322

    Article  PubMed  Google Scholar 

  • Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. The Plant Journal : for Cell and Molecular Biology 38:142–151

    Article  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97:8849–8855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S (2011) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283–289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Less H, Angelovici R, Tzin V, Galili G (2011) Coordinated gene networks regulating arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23:1264–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L, Cui W (2018) Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. Int J Mol Sci 19:1471

    Article  PubMed Central  CAS  Google Scholar 

  • Li Y, Tian S, Yang X, Xin W, Guo Y, Ni H (2016) Transcriptomic analysis reveals distinct resistant response by physcion and chrysophanol against cucumber powdery mildew. Peerj 4:e1991

  • Lin F, Letuma P, Li Z, Lin S, Rensing C, Lin W (2021) The proliferation of a rhizospheric pathogen combined with pathogen-induced ROS accumulation. J Exp Bot

  • Lippok B, Birkenbihl RP, Rivory G, Brümmer J, Schmelzer E, Logemann E, Somssich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Molecular Plant-Microbe Interactions : MPMI 20:420–429

    Article  CAS  PubMed  Google Scholar 

  • Liu CS, Chen NH, Zhang JT (2007) Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 14:492–497

    Article  CAS  Google Scholar 

  • Liu G, Ji Y, Bhuiyan NH, Pilot G, Selvaraj G, Zou J, Wei Y (2010a) Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PP, Yang Y, Pichersky E, Klessig DF (2010b) Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in arabidopsis. Molecular Plant-Microbe Interactions : MPMI 23:82–90

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Cao X, Shi S, Na Z, Li D, Fang P, Xi C, Qi W, Zhao Z (2018a) Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose ( Rosa hybrida ) petal defense against Botrytis cinerea infection. Bmc Genetics 19:62

  • Liu X, Cao X, Shi S, Zhao N, Li D, Fang P, Chen X, Qi W, Zhang Z (2018b) Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection. BMC Genet 19:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Friesen TL, Faris JD (2011) Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.). Molecular Genetics and Genomics : MGG 285:485–503

    Article  CAS  PubMed  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Monteiro S, Barakat M, Piçarra-Pereira MA, Teixeira AR, Ferreira RB (2003) Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology 93:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Nandwal AS, Kukreja S, Kumar N, Sharma PK, Jain M, Mann A, Singh S (2007) Plant water status, ethylene evolution, N(2)-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. J Plant Physiol 164:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Nanni V, Zanetti M, Bellucci M, Moser C, Bertolini P, Guella G, Serra MD, Baraldi E (2013) The peach (Prunus persica) defensin PpDFN1 displays antifungal activity through specific interactions with the membrane lipids. Plant Pathol 62:393–403

    Article  CAS  Google Scholar 

  • Návarová H, Bernsdorff F, Döring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nobori T, Velásquez AC, Wu J, Kvitko BH, Kremer JM, Wang Y, He SY, Tsuda K (2018) Transcriptome landscape of a bacterial pathogen under plant immunity. Proc Natl Acad Sci U S A 115:E3055-e3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang S, Park G, Atamian H, Han C, Stajich J, Kaloshian I, Borkovich K (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS pathogens 10:e1004464

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Ma J, Huang X, Kallenbach RL, Lock TR, Ali M, Zhang Z (2017) Population dynamics and transcriptomic responses of chorthippus albonemus (Orthoptera: Acrididae) to Herbivore grazing intensity. Front Ecol Evol 5:136

    Article  Google Scholar 

  • Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjær MF (2012) Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol 13:135–147

    Article  CAS  PubMed  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross GS, Elder PA, McWha JA, Pearce D, Pharis RP (1987) The development of an indirect enzyme linked immunoassay for abscisic acid. Plant Physiol 85:46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Ryder L, Dagdas Y, Kershaw M, Venkataraman C, Madzvamuse A, Yan X, Cruz-Mireles N, Soanes D, Oses-Ruiz M, Styles V, Sklenar J, Menke F, Talbot N (2019) A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature 574:1–5

    Article  CAS  Google Scholar 

  • Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V (2013) Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep 32:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224

    Article  CAS  PubMed  Google Scholar 

  • Schoonbeek H, Del Sorbo G, De Waard MA (2001) The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Molecular Plant-Microbe Interactions : MPMI 14:562–571

    Article  CAS  PubMed  Google Scholar 

  • Schweizer F, Bodenhausen N, Lassueur S, Masclaux F, Reymond P (2013) Differential contribution of transcription factors to Arabidopsis thaliana defense against spodoptera littoralis. Front Plant Sci 4

  • Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, Desclos-Theveniau M, Chu PW, Schulze B, Chinchilla D, Boller T, Zimmerli L (2012) The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24:1256–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Fang L, Zhu Z, Zhang L, Sun X, Wang Y, Wang Q, Li S, Xin H (2020) The transcription factor VaNAC17 from grapevine (Vitis amurensis) enhances drought tolerance by modulating jasmonic acid biosynthesis in transgenic Arabidopsis. Plant Cell Rep 39:621–634

    Article  CAS  PubMed  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766

    Article  CAS  PubMed  Google Scholar 

  • Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, Mori N, Degenhardt J, Mueller LA, Jander G (2015) Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol 169:1727–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valero-Jiménez CA, Veloso J, Staats M, van Kan JAL (2019) Comparative genomics of plant pathogenic Botrytis species with distinct host specificity. BMC Genomics 20:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K (2013) Fatty acids and early detection of pathogens. Curr Opin Plant Biol 16:520–526

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Allmann S, Wu J, Baldwin IT (2008) Comparisons of lipoxygenase3- and jasmonate-resistant4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol 146:904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Vannozzi A, Wang G, Liang YH, Tornielli GB, Zenoni S, Cavallini E, Pezzotti M, Cheng ZM (2014) Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Hortic Res 1:14016

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science (new York, NY) 342:118–123

    Article  CAS  Google Scholar 

  • Welinder KG, Justesen AF, Kjærsgård IVH, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  CAS  PubMed  Google Scholar 

  • Wen B, Mei Z, Zeng C, Liu S (2017) metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics 18:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfersberger MG (2000) Amino acid transport in insects. Annu Rev Entomol 45:111–120

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCF<sup>COI1</sup> ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue DX, Li CL, Xie ZP, Staehelin C (2019) LYK4 is a component of a tripartite chitin receptor complex in Arabidopsis thaliana. J Exp Bot 70:5507–5516

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Saijo Y, Nakagami H, Takano Y (2016) Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Yamashita-Yamada M, Hirase T, Fujiwara T, Tsuda K, Hiruma K, Saijo Y (2015) Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1. The EMBO Journal 35

  • Zeier J (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell Environ 36:2085–2103

    Article  CAS  Google Scholar 

  • Zhai J, Bischof S, Wang H, Feng S, Lee TF, Teng C, Chen X, Park SY, Liu L, Gallego-Bartolome J, Liu W, Henderson IR, Meyers BC, Ausin I, Jacobsen SE (2015) A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell 163:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wei T, Yin KQ, Chen Z, Gu H, Qu LJ, Qin G (2012) Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Génard M, Poni S, Gambetta GA, Vivin P, Vercambre G, Trought MCT, Ollat N, Delrot S, Dai Z (2019) Modelling grape growth in relation to whole-plant carbon and water fluxes. J Exp Bot 70:2505–2521

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding of the National Natural Science Foundation of China (31872938, 31672131, 31872047) and the Foundation for Distinguished Young Talents in Jiangsu (BK20180076). We are grateful to Ms. Shaoyao Lin and Ms. Ruiping Tian for helping us collect data.

Funding

the funding of National Natural Science Foundation of China,31872938,Haifeng Jia,31672131,Haifeng Jia,31872047,Haifeng Jia,Foundation for distinguished Young Talents in Jiangsu,BK20180076,Haifeng Jia

Author information

Authors and Affiliations

Authors

Contributions

JHR conducted sample treatment, data analysis, and drafted the manuscript. LT and MS helped with data analysis. ES, PQQ, and HJ helped to draft the manuscript. ZPA and SLY participated in the design of the study. ES, JHF, and FJG designed and coordinated this study and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Haifeng Jia.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message

• Transcriptome and metabolome analysis of old and young grape leaves revealed the regulatory network of the resistance to grasshopper and Botrytis cinerea.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Li, T., Haider, M.S. et al. Comparative Transcriptomic and Metabolomic Profiling of Grapevine Leaves (cv. Kyoho) upon Infestation of Grasshopper and Botrytis cinerea. Plant Mol Biol Rep 40, 539–555 (2022). https://doi.org/10.1007/s11105-022-01336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-022-01336-8

Keywords

Navigation