Skip to main content

Advertisement

Log in

Trajectory tracking-based control of the chaotic behavior in the passive bipedal compass-type robot

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper deals mainly with the control of the complex and rhythmic behaviors of the passive dynamic walk of the bipedal compass-type robot. The walking gait of such biped robot is modeled by an impulsive hybrid nonlinear system. We first show, using bifurcation diagrams, that the passive gait of the bipedal compass robot can exhibit surprising behaviors such as chaos and bifurcations. This complex nature of the walk of this type of bipedal robot requires a search for a 1-periodic walk, to better imitate human walking more faithfully, using the Poincaré map. Thus, to suppress these complex nonlinear behaviors, we control the bipedal compass-type robot to obtain a one-periodic gait by adopting two methods. The first control method is based on the passive dynamic walking of the biped robot, and then the objective is to track during the swing phase the period-1 passive trajectory. In contrast, the second control method is based on following a trajectory designed using a 4th-order Bézier function. Several simulation results are presented showing that the first control method, compared to the second one, provides an energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. A. Goswami, P. Vadakkepat, Humanoid robotics: a reference, 1st edn. (Springer, Netherlands, 2019)

    Book  Google Scholar 

  2. C. Chevallereau, G. Bessonnet, G. Abba, Y. Aoustin, Bipedal robots: modeling, design and walking synthesis, 1st edn. (John Wiley & Sons, Wiley-ISTE, 2009)

    Book  Google Scholar 

  3. R.H. Taylor, A perspective on medical robotics. Proc IEEE 94(9), 1652–1664 (2006)

    Article  Google Scholar 

  4. J.A. Falco, J.A. Marvel, R.J. Norcross, Collaborative robotics: measuring blunt force impacts on humans. Chest 140(210), 45 (2012)

    Google Scholar 

  5. X. Yang, H. She, H. Lu, T. Fukuda, Y. Shen, State of the art: Bipedal robots for lower limb rehabilitation. Artificial Life Robot 7(11), 1182 (2017)

    Google Scholar 

  6. J.W. Grizzle, C. Chevallereau, R.W. Sinnet, A.D. Ames, Models, feedback control, and open problems of 3d bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.-H. Choi, B. Morris, Feedback control of dynamic bipedal robot locomotion (Taylor & Francis/CRC, London, 2007)

    Google Scholar 

  8. J. Reher, A. D. Ames, Dynamic walking: Toward agile and efficient bipedal robots, Annual Review of Control, Robotics, and Autonomous Systems 4

  9. K. Mombaur, A. Truong, J.-P. Laumond, From human to humanoid locomotion-an inverse optimal control approach. Autonomous Robots 28(3), 369–383 (2010)

    Article  Google Scholar 

  10. T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  11. J.W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Automatic Control 46, 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Garcia, A. Chatterjee, A. Ruina, Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dyn. Stability Syst. 15(2), 75–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Garcia, A. Chatterjee, A. Ruina, M. Coleman, The simplest walking model: Stability, complexity, and scaling. J. Biomech. Eng. 120(2), 281–288 (1998)

    Article  Google Scholar 

  14. A. Goswami, B. Thuilot, B. Espiau, Study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17, 1282–1301 (1998)

    Article  Google Scholar 

  15. M. Fathizadeh, H. Mohammadi, S. Taghvaei, A modified passive walking biped model with two feasible switching patterns of motion to resemble multi-pattern human walking. Chaos, Solitons & Fractals 127, 83–95 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  16. U.D. Croce, P.O. Riley, J.L. Lelas, D. Kerrigan, A refined view of the determinants of gait. Gait & Posture 14(2), 79–84 (2001)

    Article  Google Scholar 

  17. A.D. Kuo, The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Hum. Movement Sci. 26(4), 617–656 (2007)

    Article  Google Scholar 

  18. S. Iqbal, X.Z. Zang, Y.H. Zhu, J. Zhao, Bifurcations and chaos in passive dynamic walking: a review. Robot. Autonomous Syst. 62(6), 889–909 (2014)

    Article  Google Scholar 

  19. D. Koop, C.Q. Wu, Passive dynamic biped walking-Part I: development and validation of an advanced model. J. Comput. Nonlinear Dyn. 8, 041007 (2013)

    Article  Google Scholar 

  20. D. Koop, C.Q. Wu, Passive dynamic biped walking-Part II: stability analysis of the passive dynamic gait. J. Comput. Nonlinear Dyn. 8, 041008 (2013)

    Article  Google Scholar 

  21. M. Iribe, R. Hirouji, D. Ura, K. Osuka, T. Kinugasa, Experimental verification of the characteristic behaviors in passive dynamic walking, Artificial Life and Robotics

  22. H. Kino, K. Sakata, M. Uemura, N. Mori, Simulation verification for the robustness of passive compass gait with a joint stiffness adjustment. Adv. Robot. 33(21), 1129–1143 (2019)

    Article  Google Scholar 

  23. D. Renjewski, A. Spröwitz, A. Peekema, M. Jones, J. Hurst, Exciting engineered passive dynamics in a bipedal robot. IEEE Trans. Robot. 31(5), 1244–1251 (2015)

    Article  Google Scholar 

  24. K. Deng, M. Zhao, W. Xu, Passive dynamic walking with a torso coupled via torsional springs. Int. J. Humanoid Robot. 13(4), 1650024 (2017)

    Article  Google Scholar 

  25. C. Vasileiou, A. Smyrli, A. Drogosis, E. Papadopoulos, Development of a passive biped robot digital twin using analysis, experiments, and a multibody simulation environment. Mech. Mach. Theory 163, 104346 (2021)

    Article  Google Scholar 

  26. A. Goswami, B. Thuilot, B. Espiau, Compass-like biped robot. Part I: Stability and bifurcation of passive gaits, Vol. 2996, Technical Report, INRIA, 1996

  27. A. Goswami, B. Espiau, A. Keramane, Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Autonomous Robots 4(3), 273–286 (1997)

    Article  Google Scholar 

  28. H. Gritli, S. Belghith, N. Khraeif, Intermittency and interior crisis as route to chaos in dynamic walking of two biped robots. Int. J. Bifurcation Chaos 22(3), 1250056 (2012)

    Article  MATH  ADS  Google Scholar 

  29. H. Sadeghian, M. Barkhordari, Orbital analysis of passive dynamic bipeds; the effect of model parameters and stabilizing arm. Int. J. Mech. Sci. 178, 105616 (2020)

    Article  Google Scholar 

  30. H. Gritli, S. Belghith, N. Khraeif, Cyclic-fold bifurcation and boundary crisis in dynamic walking of biped robots. Int. J. Bifurcation Chaos 22(10), 1250257 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Y. Kuang, Y. Shen, Painlevé paradox and dynamic self-locking during passive walking of bipedal robot. Euro. J. Mech. - A/Solids 77, 103811 (2019)

    Article  MATH  ADS  Google Scholar 

  32. H. Gritli, S. Belghith, Walking dynamics of the passive compass-gait model under OGY-based control: emergence of bifurcations and chaos. Commun. Nonlinear Sci. Numerical Simul. 47, 308–327 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. O. Makarenkov, Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2233) (2020) 20190450

  34. H. Gritli, S. Belghith, Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark-Sacker bifurcation. Chaos, Solitons & Fractals 110, 158–168 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. M. Fathizadeh, S. Taghvaei, H. Mohammadi, Analyzing bifurcation, stability and chaos for a passive walking biped model with a sole foot. Int. J. Bifurcation Chaos 28(9), 1850113 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. H. Gritli, N. Khraeif, S. Belghith, Period-three route to chaos induced by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped robot. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4356–4372 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Montazeri Moghadam, M. Sadeghi Talarposhti, A. Niaty, F. Towhidkhah, S. Jafari, The simple chaotic model of passive dynamic walking, Nonlinear Dynamics 93 (3) (2018) 1183–1199

  38. H. Gritli, S. Belghith, Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid poincaré map. Chaos, Solitons & Fractals 98, 72–87 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. M. Nourian Zavareh, F. Nazarimehr, K. Rajagopal, S. Jafari, Hidden attractor in a passive motion model of compass-gait robot, Int. J. Bifurcation Chaos 28 (14) (2018) 1850171

  40. H. Gritli, N. Khraeif, S. Belghith, Complex walking behaviours, chaos and bifurcations of a simple passive compass-gait biped model suffering from leg length asymmetry. Int. J. Simul. Process Modell. 13(5), 446–462 (2018)

    Article  Google Scholar 

  41. H. Gritli, N. Khraeif, S. Belghith, Chaos control in passive walking dynamics of a compass-gait model. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2048–2065 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. H. Gritli, S. Belghith, N. Khraeif, OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    Article  MATH  Google Scholar 

  43. W. Znegui, H. Gritli, S. Belghith, Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map. Nonlinear Dyn. 101(2), 1061–1091 (2020)

    Article  MATH  Google Scholar 

  44. E. Added, H. Gritli, Trajectory design and tracking-based control of the passive compass biped, in: 2020 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET), 2020, pp. 417–424

  45. E. Added, H. Gritli, Control of the passive dynamic gait of the bipedal compass-type robot through trajectory tracking, In: 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), IEEE, 2020, pp. 155–162

  46. S. Gupta, A. Kumar, A brief review of dynamics and control of underactuated biped robots. Adv. Robot. 31(12), 607–623 (2017)

    Article  Google Scholar 

  47. Y. Miladi, A. Chemori, M. Feki, The compass-like biped robot revisited: Nonlinear control of the disturbed passive dynamic walking, in: 2015 IEEE 12th International Multi-Conference on Systems, Signals Devices (SSD15), 16-19 March 2015, pp. 1–7, Mahdia, Tunisia

  48. G. Yan, C. Tang, Z. Lin, I. Malloci, Feedback control for compass-like biped robot with underactuated ankles using transverse coordinate transformation. Robotica 33(3), 563–577 (2015)

    Article  Google Scholar 

  49. Z. Wang, G. Yan, C. Tang, Z. Lin, Y. Miao, Coupling mechanical design and control design for energy-efficient and stable walking of a compass-like biped. Trans. Inst. Measurement Control 38(3), 253–265 (2016)

    Article  Google Scholar 

  50. J.-S. Moon, D.M. Stipanović, M.W. Spong, Gait generation and stabilization for nearly passive dynamic walking using auto-distributed impulses. Asian J. Control 18(4), 1343–1358 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. K. Deng, M. Zhao, W. Xu, Level-ground walking for a bipedal robot with a torso via hip series elastic actuators and its gait bifurcation control. Robot. Autonomous Syst. 79, 58–71 (2016)

    Article  Google Scholar 

  52. K. Deng, M. Zhao, W. Xu, Bifurcation gait suppression of a bipedal walking robot with a torso based on model predictive control. Robot. Autonomous Syst. 89, 27–39 (2017)

    Article  Google Scholar 

  53. C. Liu, J. Yang, K. An, M. Liu, Q. Chen, Robust control of semi-passive biped dynamic locomotion based on a discrete control Lyapunov function. Robotica 38(8), 1345–1358 (2020)

    Article  Google Scholar 

  54. A.T. Safa, S. Mohammadi, S.E. Hajmiri, M. Naraghi, A. Alasty, How local slopes stabilize passive bipedal locomotion? Mech. Mach. Theory 100, 63–82 (2016)

    Article  Google Scholar 

  55. S. Taghvaei, R. Vatankhah, Detection of unstable periodic orbits and chaos control in a passive biped model. Iran. J. Sci. Technol. Trans. Mech. Eng. 40(4), 303–313 (2016)

    Article  Google Scholar 

  56. D. Kerimoglu, O. Morgül, U. Saranli, Stability and control of planar compass gait walking with series-elastic ankle actuation. Trans. Inst. Measurement Control 39(3), 312–323 (2017)

    Article  Google Scholar 

  57. A.T. Safa, S. Mohammadi, M. Naraghi, A. Alasty, Stability improvement of a dynamic walking system via reversible switching surfaces. Multibody Syst. Dyn. 43, 349–367 (2018)

  58. Y. Hürmüzlü, G.D. Moskowitz, The role of impact in the stability of bipedal locomotion. Dyn. Stability Syst. 1(3), 217–234 (1986)

  59. W. Znegui, H. Gritli, S. Belghith, Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model. Chaos Solitons Fractals 130, 109436 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Added, H. Gritli, S. Belghith, Further analysis of the passive walking gaits of the compass biped robot: Bifurcations and chaos, in: 2021 18th International Multi-Conference on Systems, Signals Devices (SSD), 2021, pp. 160–165, Monastir, Tunisia

  61. E. Added, H. Gritli, S. Belghith, Modeling and analysis of the dynamic walking of a biped robot with knees, in: 2021 18th International Multi-Conference on Systems, Signals Devices (SSD), 2021, pp. 179–185, Monastir, Tunisia

  62. H. Gritli, S. Belghith, Displayed phenomena in the semi-passive torso-driven biped model under OGY-based control method: Birth of a torus bifurcation. Appl. Math. Modell. 40(4), 2946–2967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Gritli, S. Belghith, Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dyn. 83(4), 1955–1973 (2016)

    Article  MathSciNet  Google Scholar 

  64. W. Znegui, H. Gritli, S. Belghith, A new Poincaré map for analysis of complex walking behavior of the compass-gait biped robot. Appl. Math. Modell. 94, 534–557 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research work was funded by the Ministry of Higher Education and Scientific Research (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS)), Tunisia, for the project no. 20PEJC 06-02. The authors, therefore, acknowledge with thanks MESRS for technical and financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Added, E., Gritli, H. & Belghith, S. Trajectory tracking-based control of the chaotic behavior in the passive bipedal compass-type robot. Eur. Phys. J. Spec. Top. 231, 1071–1084 (2022). https://doi.org/10.1140/epjs/s11734-022-00471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00471-3

Navigation