Skip to main content
Log in

Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The compass-gait biped robot is a two-DoF legged mechanical system that has been known by its passive dynamic walking. This kind of passive biped robot is modeled by an impulsive hybrid nonlinear system that exhibits complex behaviors. This paper is concerned with the stabilization of the passive dynamic walking of the compass-gait biped robot by designing an analytical expression of the controlled Poincaré map. The suggested analytical method starts with the time-piecewise linearization of the impulsive system augmented with the controller, around a desired one-periodic passive hybrid limit cycle. By virtue of the first-order Taylor series, we design an explicit expression of the controlled Poincaré map. We present also a simplified expression of the controlled Poincaré map having a reduced dimension. In order to accomplish our goal concerned with the stabilization of the passive walking dynamics of the compass-gait biped robot, we develop first the linearized Poincaré map around the period-1 fixed point of the Poincaré map and we adopt a state-feedback control law to stabilize it. Furthermore, in order to enhance the effectiveness and robustness of the stabilization process, we adopt an LMI-based optimization approach by considering the controlled Poincaré map to design the feedback gain. In the end of this work, we provide some numerical and graphical simulation results, to show the validity of the designed control law by means of the controlled Poincaré map in the stabilization of the passive dynamic walking of the compass-gait biped robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goswami, A., Vadakkepat, P.: Humanoid Robotics: A Reference, 1st edn. Springer, Amsterdam (2019)

    Google Scholar 

  2. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.-H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis/CRC, London (2007)

    Google Scholar 

  3. Grizzle, J.W., Chevallereau, C., Sinnet, R.W., Ames, A.D.: Models, feedback control, and open problems of 3d bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Al-Shuka, H.F.N., Rahman, M.H., Leonhardt, S., Ciobanu, I., Berteanu, M.: Biomechanics, actuation, and multi-level control strategies of power-augmentation lower extremity exoskeletons: an overview. Int. J. Dyn. Control 7(4), 1462–1488 (2019)

    MathSciNet  Google Scholar 

  5. Kuo, A.D.: The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Hum. Mov. Sci. 26(4), 617–656 (2007)

    Google Scholar 

  6. Gupta, S., Kumar, A.: A brief review of dynamics and control of underactuated biped robots. Adv. Robot. 31(12), 607–623 (2017)

    Google Scholar 

  7. Iqbal, S., Zang, X.Z., Zhu, Y.H., Zhao, J.: Bifurcations and chaos in passive dynamic walking: a review. Robot. Auton. Syst. 62(6), 889–909 (2014)

    Google Scholar 

  8. Hoffmann, M., Simanek, J.: The merits of passive compliant joints in legged locomotion: Fast learning, superior energy efficiency and versatile sensing in a quadruped robot. J. Bionic Eng. 14(1), 1–14 (2017)

    Google Scholar 

  9. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–68 (1990)

    Google Scholar 

  10. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120(2), 281–288 (1998)

    Google Scholar 

  11. Goswami, A., Thuilot, B., Espiau, B.: Study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17, 1282–1301 (1998)

    Google Scholar 

  12. Garcia, M., Chatterjee, A., Ruina, A.: Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dyn. Stab. Syst. 15(2), 75–99 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Das, S.L., Chatterjee, A.: An alternative stability analysis technique for the simplest walker. Nonlinear Dyn. 28(3), 273–284 (2002)

    MATH  Google Scholar 

  14. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Google Scholar 

  15. Byl, K., Tedrake, R.: Metastable walking machines. Int. J. Robot. Res. 28(8), 1040–1064 (2009)

    Google Scholar 

  16. Wisse, M., Feliksdal, G., Frankenhuyzen, J.V., Moyer, B.: Passive-based walking robot. IEEE Robot. Autom. Mag. 14(2), 52–62 (2007)

    Google Scholar 

  17. Koop, D., Wu, C.Q.: Passive dynamic biped walking—part I: development and validation of an advanced model. J. Comput. Nonlinear Dyn. 8, 041007 (2013)

    Google Scholar 

  18. Koop, D., Wu, C.Q.: Passive dynamic biped walking—part II: stability analysis of the passive dynamic gait. J. Comput. Nonlinear Dyn. 8, 041008 (2013)

    Google Scholar 

  19. Deng, K., Zhao, M., Xu, W.: Passive dynamic walking with a torso coupled via torsional springs. Int. J. Humanoid Robot. 13(4), 1650024 (2017)

    Google Scholar 

  20. Huang, Y., Wang, Q.-N., Gao, Y., Xie, G.-M.: Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints. Acta Mech. Sin. 28(3), 1457–1465 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.: Exciting engineered passive dynamics in a bipedal robot. IEEE Trans. Robot. 31(5), 1244–1251 (2015)

    Google Scholar 

  22. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based control: emergence of bifurcations and chaos. Commun. Nonlinear Sci. Numer. Simul. 47, 308–327 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: analysis of local bifurcations via the hybrid Poincaré map. Chaos Solitons Fractals 98, 72–87 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Gritli, H., Belghith, S.: Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: rise of the Neimark–Sacker bifurcation. Chaos Solitons Fractals 110, 158–168 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Safa, A.T., Mohammadi, S., Hajmiri, S.E., Naraghi, M., Alasty, A.: How local slopes stabilize passive bipedal locomotion? Mech. Mach. Theory 100, 63–82 (2016)

    Google Scholar 

  26. Martínez-Castelín, J.N., Villarreal-Cervantes, M.G.: Frontal-sagittal dynamiccoupling in the optimal design of a passive bipedal walker. IEEE Access 7, 427–449 (2019)

    Google Scholar 

  27. Montazeri Moghadam, S., Sadeghi Talarposhti, M., Niaty, A., Towhidkhah, F., Jafari, S.: The simple chaotic model of passive dynamic walking. Nonlinear Dyn. 93(3), 1183–1199 (2018)

    Google Scholar 

  28. Kino, H., Sakata, K., Uemura, M., Mori, N.: Simulation verification for the robustness of passive compass gait with a joint stiffness adjustment. Adv. Robot. 33(21), 1129–1143 (2019)

    Google Scholar 

  29. Gritli, H., Khraeif, N., Belghith, S.: Complex walking behaviours, chaos and bifurcations of a simple passive compass-gait biped model suffering from leg length asymmetry. Int. J. Simul. Process Model. 13(5), 446–462 (2018)

    Google Scholar 

  30. Fathizadeh, M., Mohammadi, H., Taghvaei, S.: A modified passive walking biped model with two feasible switching patterns of motion to resemble multi-pattern human walking. Chaos Solitons Fractals 127, 83–95 (2019)

    MathSciNet  Google Scholar 

  31. Makarenkov, O.: Existence and stability of limit cycles in the model of a planar passive biped walking down a slope. Proc. R. Soc. A Math. Phys. Eng. Sci. 476(2233), 20190450 (2020)

    MathSciNet  Google Scholar 

  32. Mochon, S., McMahon, T.A.: Ballistic walking. J. Biomech. 13(1), 49–57 (1980)

    MATH  Google Scholar 

  33. Mochon, S., McMahon, T.A.: Ballistic walking: an improved model. Math. Biosci. 52(3), 241–260 (1980)

    MathSciNet  MATH  Google Scholar 

  34. Gritli, H., Belghith, S., Khraeif, N.: Intermittency and interior crisis as route to chaos in dynamic walking of two biped robots. Int. J. Bifurc. Chaos 22(3), 19 (2012)

    MATH  Google Scholar 

  35. Gritli, H., Belghith, S., Khraeif, N.: Cyclic-fold bifurcation and boundary crisis in dynamic walking of biped robots. Int. J. Bifurc. Chaos 22(10), 15 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Li, Q., Yang, X.S.: New walking dynamics in the simplest passive bipedal walking model. Appl. Math. Model. 36(11), 5262–5271 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Li, Q., Guo, J., Yang, X.S.: New bifurcations in the simplest passive walking model. Chaos Interdiscip. J. Nonlinear Sci. 23, 043110 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Li, Q., Yang, X.S.: Bifurcation and chaos in the simple passive dynamic walking model with upper body. Chaos Interdiscip. J. Nonlinear Sci. 24, 033114 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Deng, K., Zhao, M., Xu, W.: Level-ground walking for a bipedal robot with a torso via hip series elastic actuators and its gait bifurcation control. Robot. Auton. Syst. 79, 58–71 (2016)

    Google Scholar 

  40. Safa, A.T., Alasty, A., Naraghi, M.: A different switching surface stabilizing an existing unstable periodic gait: an analysis based on perturbation theory. Nonlinear Dyn. 81(4), 2127–2140 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Safa, A.T., Naraghi, M.: The role of walking surface in enhancing the stability of the simplest passive dynamic biped. Robotica 33(1), 195–207 (2015)

    Google Scholar 

  42. Moon, J.-S., Lee, S.-M., Bae, J., Youm, Y.: Analysis of period-1 passive limit cycles for flexible walking of a biped with knees and point feet. Robotica 34(11), 2486–24988 (2016)

    Google Scholar 

  43. Nourian Zavareh, M., Nazarimehr, F., Rajagopal, K., Jafari, S.: Hidden attractor in a passive motion model of compass-gait robot. Int. J. Bifurc. Chaos 28(14), 1850171 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Fathizadeh, M., Taghvaei, S., Mohammadi, H.: Analyzing bifurcation, stability and chaos for a passive walking biped model with a sole foot. Int. J. Bifurc. Chaos 28(9), 1850113 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Gritli, H., Khraeif, N., Belghith, S.: Period-three route to chaos induced by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped robot. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4356–4372 (2012)

    MathSciNet  Google Scholar 

  46. Gritli, H., Belghith, S.: Displayed phenomena in the semi-passive torso-driven biped model under OGY-based control method: Birth of a torus bifurcation. Appl. Math. Model. 40(4), 2946–2967 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Gritli, H., Belghith, S.: Bifurcations and chaos in the semi-passive bipedal dynamic walking model under a modified OGY-based control approach. Nonlinear Dyn. 83(4), 1955–1973 (2016)

    MathSciNet  Google Scholar 

  48. Hiskens, I.A., Pai, M.A.: Trajectory sensitivity analysis of hybrid systems. IEEE Trans. Circuits Syst. I(47), 204–220 (2000)

    Google Scholar 

  49. Gritli, H., Belghith, S.: Identification, Stability and Stabilization of Limit Cycles in a Compass-Gait Biped Model via a Hybrid Poincaré Map, Springer International Publishing, Cham, pp. 259–289 (2016)

  50. Deng, K., Zhao, M., Xu, W.: Bifurcation gait suppression of a bipedal walking robot with a torso based on model predictive control. Robot. Auton. Syst. 89, 27–39 (2017)

    Google Scholar 

  51. Huang, Y., Huang, Q., Wang, Q.: Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1229–1240 (2017). https://doi.org/10.1109/TSMC.2016.2569474

    Article  Google Scholar 

  52. Taghvaei, S., Vatankhah, R.: Detection of unstable periodic orbits and chaos control in a passive biped model. Iran. J. Sci. Technol. Trans. Mech. Eng. 40(4), 303–313 (2016)

    Google Scholar 

  53. Yan, G., Tang, C., Lin, Z., Malloci, I.: Feedback control for compass-like biped robot with underactuated ankles using transverse coordinate transformation. Robotica 33(3), 563–577 (2015)

    Google Scholar 

  54. Wang, Z., Yan, G., Tang, C., Lin, Z., Miao, Y.: Coupling mechanical design and control design for energy-efficient and stable walking of a compass-like biped. Trans. Inst. Meas. Control 38(3), 253–265 (2016)

    Google Scholar 

  55. Tang, C., Yan, G., Lin, Z., Wang, Z., Yi, Y.: Stable walking of 3d compass-like biped robot with underactuated ankles using discrete transverse linearization. Trans. Inst. Meas. Control 37(9), 1074–1083 (2015)

    Google Scholar 

  56. Moon, J.-S., Stipanović, D.M., Spong, M.W.: Gait generation and stabilization for nearly passive dynamic walking using auto-distributed impulses. Asian J. Control 18(4), 1343–1358 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Liu, C., Yang, J., An, K., Liu, M., Chen, Q.: Robust control of semi-passive biped dynamic locomotion based on a discrete control lyapunov function. Robotica 38(8), 1345–1358 (2020). https://doi.org/10.1017/S0263574719001504

    Article  Google Scholar 

  58. Gritli, H., Khraeif, N., Belghith, S.: Chaos control in passive walking dynamics of a compass-gait model. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2048–2065 (2013)

    MathSciNet  MATH  Google Scholar 

  59. Gritli, H., Belghith, S., Khraeif, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    MATH  Google Scholar 

  60. Gritli, H., Belghith, S.: Computation of the Lyapunov exponents in the compass-gait model under OGY control via a hybrid Poincaré map, Chaos Solitons Fractals 81. Part A, pp. 172–183 (2015)

  61. Benmiloud, M., Benalia, A., Djemai, M., Defoort, M.: Hybrid control design for limit cycle stabilisation of planar switched systems. Int. J. Control 91(7), 1720–1729 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Benmiloud, M., Benalia, A., Djemai, M., Defoort, M.: On the local stabilization of hybrid limit cycles in switched affine systems. IEEE Trans. Autom. Control 64(2), 841–846 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Znegui, W., Gritli, H., Belghith, S.: An explicit analytical expression of the Poincaré map for analyzing passive dynamic walking of the compass-gait biped model. In: 2019 International Conference on Advanced Systems and Emergent Technologies (IC\_ASET), pp. 388–394 (2019)

  64. Znegui, W., Gritli, H., Belghith, S.: Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model. Chaos Solitons Fractals 130, 109436 (2020)

    MathSciNet  Google Scholar 

  65. Gritli, H., Khraeif, N., Belghith, S.: Handbook of Research on Advanced Intelligent Control Engineering and Automation, Advances in Computational Intelligence and Robotics (ACIR), IGI Global, USA, 2015, Ch. Further investigation of the period-three route to chaos in the passive compass-gait biped model, pp. 279–300

  66. Obayashi, I., Aoi, S., Tsuchiya, K., Kokubu, H.: Formation mechanism of a basin of attraction for passive dynamic walking induced by intrinsic hyperbolicity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2190), 1–19 (2016)

    MathSciNet  MATH  Google Scholar 

  67. An, K., Fang, Z., Li, Y., Chen, Q.: Internal features in basin of attraction of the simplest walking model. J. Mech. Sci. Technol. 29(11), 4913–4921 (2015)

    Google Scholar 

  68. Obayashi, I., Aoi, S., Tsuchiya, K., Kokubu, H.: Common formation mechanism of basin of attraction for bipedal walking models by saddle hyperbolicity and hybrid dynamics. Jpn. J. Ind. Appl. Math. 32(2), 315–332 (2015)

    MathSciNet  MATH  Google Scholar 

  69. Sidorov, E., Zacksenhouse, M.: Lyapunov based estimation of the basin of attraction of Poincare maps with applications to limit cycle walking. Nonlinear Anal. Hybrid Syst. 33, 179–194 (2019)

    MathSciNet  MATH  Google Scholar 

  70. Wang, Y., Cao, H., Jiang, J.: An improved method for estimating the domain of attraction of passive biped walker. Discrete Dyn. Nat. Soc. 2019, 11 (2019)

    Google Scholar 

  71. Moon, J.-S., Spong, M.: Classification of periodic and chaotic passive limit cycles for a compass-gait biped with gait asymmetries. Robotica 29(7), 967–974 (2011)

    Google Scholar 

  72. Hu, Y., Yan, G., Lin, Z.: Gait generation and control for biped robots with underactuation degree one. Automatica 47(8), 1605–1616 (2011)

    MathSciNet  MATH  Google Scholar 

  73. La Hera, P.X.M., Shiriaev, A.S., Freidovich, L.B., Mettin, U., Gusev, S.V.: Stable walking gaits for a three-link planar biped robot with one actuator. IEEE Trans. Robot. 29(3), 589–601 (2013)

    Google Scholar 

  74. Manchester, I.R., Mettin, U., Iida, F., Tedrake, R.: Stable dynamic walking over rough terrain: Theory and experiment. In: Proceedings of the International Symposium on Robotics Research, pp. 1–16 (2009)

  75. Iida, F., Tedrake, R.: Minimalistic control of biped walking in rough terrain. Auton. Robots 28(3), 355–368 (2010)

    Google Scholar 

  76. Asano, F., Luo, Z.-W.: Efficient dynamic bipedal walking using effects of semicircular feet. Robotica 29(3), 351–365 (2011)

    Google Scholar 

  77. Asano, F., Luo, Z.W., Yamakita, M.: Biped gait generation and control based on a unified property of passive dynamic walking. IEEE Trans. Robot. 21(4), 754–762 (2005)

    Google Scholar 

  78. Doosti, P., Mahjoob, M.J., Dadashzadeh, B.: Finite-time control strategy for the running of a telescopic leg biped robot. J. Braz. Soc. Mech. Sci. Eng. 41(4), 196 (2019)

    Google Scholar 

  79. Asano, F., Luo, Z.-W.: Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation. IEEE Trans. Robot. 24(6), 1289–1301 (2008)

    Google Scholar 

  80. Hayashia, T., Kanekob, K., Asanoc, F., Luoa, Z.-W.: Experimental study of dynamic bipedal walking based on the principle of parametric excitation with counterweights. Adv. Robot. 25(1–2), 273–287 (2011)

    Google Scholar 

  81. Gritli, H.: Poincaré maps design for the stabilization of limit cycles in non-autonomous nonlinear systems via time-piecewise-constant feedback controllers with application to the chaotic Duffing oscillator. Chaos Solitons Fractals 127, 127–145 (2019)

    MathSciNet  Google Scholar 

  82. Gritli, H.: Robust master-slave synchronization of chaos in a one-sided 1-DoF impact mechanical oscillator subject to parametric uncertainties and disturbances. Mech. Mach. Theory 142, 103610 (2019)

    Google Scholar 

  83. Gritli, H., Belghith, S.: Robust feedback control of the underactuated inertia wheel inverted pendulum under parametric uncertainties and subject to external disturbances LMI formulation. J. Frankl. Inst. 355(18), 9150–9191 (2018)

    MathSciNet  MATH  Google Scholar 

  84. Gritli, H., Belghith, S.: Diversity in the nonlinear dynamic behavior of a one-degree-of-freedom impact mechanical oscillator under OGY-based state-feedback control law: order, chaos and exhibition of the border-collision bifurcation. Mech. Mach. Theory 124, 1–41 (2018)

    Google Scholar 

  85. Piiroinen, P.T., Virgin, L.N., Champneys, A.R.: Chaos and period-adding: experimental and numerical verification of the grazing bifurcation. J. Nonlinear Sci. 14(4), 383–404 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassène Gritli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The PDW of the compass-gait biped robot consists of a continuous dynamics modeling the motion during the swing phase and an algebraic/discrete equation describing the instantaneous transition in the state vector during the impact phase [64].

Let us consider the vector \(\varvec{\theta }=\left[ \begin{array}{cc} \theta _{ns}&\,\theta _{s} \end{array} \right] ^T\) of generalized coordinates of the compass-gait biped robot. Then, the swing motion is defined by the following dynamics:

$$\begin{aligned} \varvec{{\mathcal {J}}}(\varvec{\theta })\ddot{\varvec{\theta }}+\varvec{{\mathcal {H}}}(\varvec{\theta },\dot{\varvec{\theta }})+\varvec{{\mathcal {G}}}(\varvec{\theta })=\varvec{{\mathcal {B}}}u \end{aligned}$$
(A-1)

where \(\varvec{{\mathcal {J}}}\) is the inertia matrix, \(\varvec{{\mathcal {H}}}\) includes Coriolis and centrifugal terms, \(\varvec{{\mathcal {G}}}\) is the gravitational matrix/vector and \(\varvec{{\mathcal {B}}}\) is the input matrix. These matrices are defined as follows:

\({\varvec{{\mathcal {J}}}}(\varvec{\theta }) = \left[ \begin{array}{cc} mb^2 &{} -mlb\cos (\theta _{s}-\theta _{ns})\\ -mlb\cos (\theta _{s}-\theta _{ns}) \,\,\,\,\, &{} m_{H}l^2+m(l^2+a^2) \end{array} \right] \),

\(\varvec{{{\mathcal {H}}}}(\varvec{\theta },\varvec{{\dot{\theta }}}) = \left[ \begin{array}{c} mlb{\dot{\theta }}_{s}^2\sin (\theta _{s}-\theta _{ns})\\ -mlb{\dot{\theta }}_{ns}^2\sin (\theta _{s}-\theta _{ns}) \end{array} \right] \),

\(\varvec{{{\mathcal {G}}}}(\varvec{\theta }) = g\left[ \begin{array}{c} mbsin(\theta _{ns})\\ -(m_{H}l+m(a+l))\sin (\theta _{s}) \end{array} \right] \) and \(\varvec{{{\mathcal {B}}}} = \left[ \begin{array}{c} -1\\ 1 \end{array} \right] \).

While descending the inclined walking surface of slope \(\varphi \), the swing leg of the compass-gait biped robot is above the ground. Such situation is reformulated by the following set:

$$\begin{aligned} \varOmega =\left\{ \varvec{\theta }\in \mathfrak {R}^2\ :\ {{\mathcal {L}}}_{1}(\varvec{\theta })=l\left( \cos (\theta _{s}+\varphi )-\cos (\theta _{ns}+\varphi )\right) >0\right\} \end{aligned}$$
(A-2)

In addition, the impact phase happens if and only if the following conditions hold:

  1. 1.

    the swing leg reaches the walking surface,

  2. 2.

    the swing leg is moving downward,

  3. 3.

    the swing leg is in front of the stance leg.

These three impact conditions are recast by the following set:

$$\begin{aligned} \varGamma =\left\{ \begin{array}{rl} {{\mathcal {L}}}_{1}(\varvec{\theta }) &{}= l\left( \cos (\theta _{s}+\varphi )-\cos (\theta _{ns}+\varphi )\right) =0\\ {{\mathcal {L}}}_{2}(\varvec{\theta },\dot{\varvec{\theta }}) &{}= \frac{\partial \varPhi _{1}\left( \varvec{\theta }\right) }{\partial \varvec{\theta }} \dot{\varvec{\theta }}<0\\ {{\mathcal {L}}}_{3}(\varvec{\theta }) &{}= l\left( \sin (\theta _{ns})-\sin (\theta _{s})\right) >0 \end{array} \right\} \end{aligned}$$
(A-3)

At the impact phase, and then when the swing leg of the compass-gait biped robot encounters the walking surface, the vector of angular positions \(\varvec{\theta }\) and the vector of angular velocities \(\dot{\varvec{\theta }}\) undergo an instantaneous transition with respect to the two following algebraic expressions:

$$\begin{aligned}&\varvec{\theta }^{+}=\varvec{{{\mathcal {R}}}_{e}}\varvec{\theta }^{-} \end{aligned}$$
(A-4a)
$$\begin{aligned}&\dot{\varvec{\theta }}^{+}=\varvec{{{\mathcal {S}}}_{e}}\left( \varvec{\theta }^{-}\right) \dot{\varvec{\theta }}^{-} \end{aligned}$$
(A-4b)

where in (A-4), superscribes \(^{+}\) and \(^{-}\) denote, respectively, just after and just before the impact phase. The two matrices \(\varvec{{{\mathcal {R}}}_{e}}\) and \(\varvec{{{\mathcal {S}}}_{e}}\left( \varvec{\theta }^{-}\right) \) are expressed as follows: \(\varvec{{{\mathcal {R}}}_{e}} {=} \left[ \begin{array}{cc} 0 &{}\ \ 1\\ 1 &{}\ \ 0 \end{array} \right] \), \(\varvec{{{\mathcal {S}}}_{e}}\left( \varvec{\theta }^{-}\right) {=} {\varvec{Q}}_{p}^{-1}(\alpha )\,{\varvec{Q}}_{m}(\alpha )\), with

\({\varvec{Q}}_{m}(\alpha ) {=} \left[ \begin{array}{cc} -mab \,\,\,\,\,&{} -mab{+}(m_{H}l^2{+}2mal)\cos (2\alpha )\\ 0 &{} -mab \end{array} \right] \),

\({\varvec{Q}}_{p}(\alpha ) {=} \left[ \begin{array}{cc} mb(b-l\cos (2\alpha )) \,\,\,\,\, &{} \begin{array}{c}ml(l-b\cos (2\alpha ))+\\ ma^2{+}m_{H}l^2\end{array} \\ mb^2 &{} -mbl\cos (2\alpha ) \end{array} \right] \) Recall that \(\alpha \) is the half-interleg angle and is given as \(\alpha =\frac{1}{2}(\theta _{s}-\theta _{ns})\).

Hence, the continuous dynamics (A-1) and its constraint (A-2) and the algebraic equations in (A-4) and the set of impact conditions in (A-3) define the IHNLD of the compass-gait biped robot. It can be rewritten under the state representation in (1), where \({\varvec{f}}({\varvec{x}})=\left[ \begin{array}{c} \dot{\varvec{\theta }} \\ -\varvec{{{\mathcal {J}}}}(\varvec{\theta })^{-1}\left( \varvec{{{\mathcal {H}}}}(\varvec{\theta },\dot{\varvec{\theta }})+\varvec{{{\mathcal {G}}}}(\varvec{\theta })\right) \end{array} \right] \), \({\varvec{g}}({\varvec{x}})=\left[ \begin{array}{c} \varvec{{\mathcal {O}}}_{2 \times 1} \\ \varvec{{{\mathcal {J}}}}(\varvec{\theta })^{-1}\varvec{{{\mathcal {B}}}} \end{array} \right] \), \({{\varvec{h}}}\left( {\varvec{x}}\right) =\left[ \begin{array}{cc} \varvec{{{\mathcal {R}}}}_{e} &{}\, \varvec{{\mathcal {O}}}_{2\times 2}\\ \varvec{{\mathcal {O}}}_{2\times 2} &{}\, \varvec{{{\mathcal {S}}}}_{e}\left( \varvec{\theta }^{-}\right) \end{array} \right] {\varvec{x}}\), with \(\varvec{{\mathcal {O}}}\) the zero matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Znegui, W., Gritli, H. & Belghith, S. Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map. Nonlinear Dyn 101, 1061–1091 (2020). https://doi.org/10.1007/s11071-020-05851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05851-9

Keywords

Navigation