Skip to main content
Log in

Detection of Unstable Periodic Orbits and Chaos Control in a Passive Biped Model

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Dynamic analysis of passive biped models plays a significant role both in understanding human locomotion and in developing humanoid robots. In this investigation, two chaos control algorithms based on linearization of Poincaré map (OGY method) and artificial neural networks (ANNs) are utilized to control the motion of a passive biped model. To this end, the chaotic characteristics of the system are analyzed using several nonlinear dynamics tools such as Poincaré map, bifurcation diagram, and Lyapunov exponents, and then, unstable periodic orbits (UPOs) of the system are detected. Detection of these orbits helps to extract a desired walking pattern and also is utilized for chaos elimination of the system. The robustness of the proposed ANN-based control algorithm is verified by applying toe-off impulses to the biped during the gait. Furthermore, the effect of network parameters on the biped walking performance is investigated to get design guidelines for the ANN-based controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abedini M, Vatankhah R, Assadian N (2012) Stabilizing chaotic system on periodic orbits using multi-interval and modern optimal control strategies. Commun Nonlinear Sci Numer Simul 17(10):3832–3842

    Article  MathSciNet  MATH  Google Scholar 

  • Alberto L, O’Connor JJ, Giannini S (2014) Biomechanics of the natural, arthritic, and replaced human ankle joint. J Foot Ankle Res 7(1):8

    Article  Google Scholar 

  • Asano F, Toshiaki S, Tetsuro F (2015) Passive dynamic walking of compass-like biped robot on slippery downhill. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) 2015

  • Baker GL, Gollub JP (1996) chaotic dynamics. Cambridge University Press, NewYork

    Book  MATH  Google Scholar 

  • Bu S, Wang BH, Jiang PQ (2004) Detecting unstable periodic orbits in chaotic systems by using an efficient algorithm. Chaos Solitons Fractals 22:237–241

    Article  MATH  Google Scholar 

  • Buhl M, Kennel MB (2007) Globally enumerating unstable periodic orbit theory for observed data using symbolic dynamics. Chaos Interdiscip J Nonlinear Sci 17:033102

    Article  MathSciNet  MATH  Google Scholar 

  • Danca MF, Tang WK, Wang Q, Chen QG (2013) Suppressing chaos in fractional-order systems by periodic perturbations on system variables. Eur Phys J B 86(3):1–8

    Article  MathSciNet  Google Scholar 

  • Gan CB, Ding CT, Yang S (2014) Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances. Acta Mech Sin 30(6):983–994

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia M, Chatterjee A, Ruina A, Coleman M (1997) The simplest walking model: stability, and scaling. ASME J Biomech Eng 120:281–288

    Article  Google Scholar 

  • Garcia E, Estremera J, Gonzales de Santos P (2002) A comparative study of stability margins for walking machines. Robotica 20:595–606

    Article  Google Scholar 

  • Goswami A, Thuilot B, Espiau B (1998) A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Robot Res 17(12):1282–1301

    Article  Google Scholar 

  • Gritli H, Khraeif N, Belghith S (2012) Period-three route to chaos induced by a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped robot. Commun Nonlinear Sci Numer Simul 17(11):4356–4372

    Article  MathSciNet  MATH  Google Scholar 

  • Gritli H, Belghith S, Khraief N (2015) OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn 79(2):1363–1384

    Article  MATH  Google Scholar 

  • Hagan MT, Howard BD, Beale MH (2002) Neural network design. Pws Pub, Boston

    Google Scholar 

  • Harata Y, Asano F, Taji K, Uno Y (2012) Efficient parametric excitation walking with delayed feedback control. Nonlinear Dyn 67(2):1327–1335

    Article  MathSciNet  Google Scholar 

  • Hausdorff JM, Lertratanakul A, Cudkowicz ME, Peterson AL, Kaliton D, Goldberger AL (2000) Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol 88:2045–2053

    Google Scholar 

  • Khosravi B, Yurkovich S, Hemami H (1987) Control of a four link biped in a back somersault maneuver. IEEE Trans Syst Man Cybern 17(2):303–325

    Article  Google Scholar 

  • Kurz MJ, Stergiou N (2005) An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Biol Cybern 93:213–221

    Article  MATH  Google Scholar 

  • Li Z, Ge SS (2013) Adaptive robust controls of biped robots. IET Control Theory Appl 7(2):161–175

    Article  MathSciNet  Google Scholar 

  • Liu C, Atkeson CG, Su J (2013) Biped walking control using a trajectory library. Robotica 31(2):311–322

    Article  Google Scholar 

  • McGeer T (1990) Passive dynamic walking. Int J Robot Res 9:62–82

    Article  Google Scholar 

  • Ott E (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Philippe D, Drigeard C, Gjini L, Dal Maso F, Zanone PG (2013) Effects of foot orthoses on the temporal pattern of muscular activity during walking. Clin Biomech 28(7):820–824

    Article  Google Scholar 

  • Piiroinen P, Dankowicz H (2002) Low-cost control of repetitive gait in passive bipedal walkers. Int J Bifurc Chaos 15:1959–1973

    Article  MathSciNet  MATH  Google Scholar 

  • Pourtakdoust SH, Fazelzadeh SA (2003) Effect of structural damping on chaotic behavior of nonlinear panel flutter. Iran J Sci Technol Trans B Eng 27(3):453–467

    MATH  Google Scholar 

  • Schwab AL, Wisse M (2001) Basin of attraction of the simplest walking model. Proc ASME Des Eng Tech Conf 6:531–539

    Google Scholar 

  • Shirazi KH, Ghafari SM (2003) Local bifurcation in torque free rigid body motion. Iran J Sci Technol Trans B Eng 27(3):493–506

    MATH  Google Scholar 

  • Sprott JC, Sprott JC (2003) Chaos and time-series analysis, vol 69. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Starrett J, Tagg R (1995) Control of a chaotic parametrically driven pendulum. Phys Rev Lett 74(11):1974–1977

    Article  Google Scholar 

  • Suzuki S, Furuta K, Hatakeyama S (2005) Passive walking towards running. Math Comput Model Dyn Syst 11(4):371–395

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Ding J, Xiao X (2015) Periodic stability for 2-D biped dynamic walking on compliant ground. In: Liu H, Kubota N, Zhu X, Dillmann R, Zhou D (eds) Intelligent robotics and applications. Springer, Switzerland, pp 369–380

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Taghvaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghvaei, S., Vatankhah, R. Detection of Unstable Periodic Orbits and Chaos Control in a Passive Biped Model. Iran J Sci Technol Trans Mech Eng 40, 303–313 (2016). https://doi.org/10.1007/s40997-016-0041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0041-5

Keywords

Navigation