Skip to main content
Log in

A numerical direct scattering method for the periodic sine-Gordon equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a procedure for computing the direct scattering transform of the periodic sine-Gordon equation. This procedure, previously used within the periodic Korteweg–de Vries equation framework, is implemented for the case of the sine-Gordon equation and is validated numerically. In particular, we show that this algorithm works well with signals involving topological solitons, such as kink or anti-kink solitons, but also for non-topological solitons, such as breathers. It also has the ability to distinguish between these different solutions of the sine-Gordon equation within the complex plane of the eigenvalue spectrum of the scattering problem. The complex trace of the scattering matrix is made numerically accessible, and the influence of breathers on the latter is highlighted. Finally, periodic solutions of the sine-Gordon equation and their spectral signatures are explored in both the large-amplitude (cnoidal-like waves) and low-amplitude (radiative modes) limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. J.S. Russell, Report on waves. Proc. R. Soc. Edinburgh 11, 319 (1844)

    Google Scholar 

  2. J. Frenkel, T. Kontorova, On the theory of plastic deformation and twinning. Izv. Akad. Nauk Ser. Fiz. 1, 137–149 (1939)

    MathSciNet  Google Scholar 

  3. M. Remoissenet, Waves Called Solitons, 3rd edn. (Springer, Heidelberg, 1999)

    Book  Google Scholar 

  4. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  5. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, 1981). https://doi.org/10.1137/1.9781611970883

    Book  Google Scholar 

  6. P.G. Drazin, R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989). https://doi.org/10.1017/CBO9781139172059

    Book  Google Scholar 

  7. A.R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Academic Press, London, 2010)

    Google Scholar 

  8. P. Suret, M. Dufour, G. Roberti, G. El, F. Copie, S. Randoux, Soliton refraction by an optical soliton gas. Phys. Rev. Res. 5, L042002 (2023). https://doi.org/10.1103/PhysRevResearch.5.L042002

    Article  Google Scholar 

  9. I. Redor, E. Barthélemy, H. Michallet, M. Onorato, N. Mordant, Experimental evidence of a hydrodynamic soliton gas. Phys. Rev. Lett. 122, 214502 (2019). https://doi.org/10.1103/PhysRevLett.122.214502

    Article  ADS  Google Scholar 

  10. P. Suret, A. Tikan, F. Bonnefoy, F. Copie, G. Ducrozet, A. Gelash, G. Prabhudesai, G. Michel, A. Cazaubiel, E. Falcon, G. El, S. Randoux, Nonlinear spectral synthesis of soliton gas in deep-water surface gravity waves. Phys. Rev. Lett. 125, 264101 (2020). https://doi.org/10.1103/PhysRevLett.125.264101

    Article  ADS  Google Scholar 

  11. A. Tikan, F. Bonnefoy, G. Roberti, G. El, A. Tovbis, G. Ducrozet, A. Cazaubiel, G. Prabhudesai, G. Michel, F. Copie, E. Falcon, S. Randoux, P. Suret, Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering. Phys. Rev. Fluids 7, 054401 (2022). https://doi.org/10.1103/PhysRevFluids.7.054401

    Article  ADS  Google Scholar 

  12. A.C. Scott, A nonlinear Klein–Gordon equation. Am. J. Phys. 37(1), 52–61 (1969). https://doi.org/10.1119/1.1975404

    Article  ADS  Google Scholar 

  13. A.V. Ustinov, Solitons in Josephson junctions. Phys. D 123(1), 315–329 (1998). https://doi.org/10.1016/S0167-2789(98)00131-6

    Article  Google Scholar 

  14. V.G. Ivancevic, T.T. Ivancevic, Sine-Gordon solitons, kinks and breathers as physical models of nonlinear excitations in living cellular structures. J. Geom. Symmetry Phys. 31, 1–56 (2013). https://doi.org/10.7546/jgsp-31-2013-1-56

    Article  MathSciNet  Google Scholar 

  15. B.A. Malomed, In: Cuevas-Maraver, J., Kevrekidis, P.G., Williams, F. (eds.) The sine-Gordon Model: General Background, Physical Motivations, Inverse Scattering, and Solitons (Springer, Cham, 2014), pp. 1–30. https://doi.org/10.1007/978-3-319-06722-3_1

  16. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Method for solving the sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973). https://doi.org/10.1103/PhysRevLett.30.1262

    Article  ADS  MathSciNet  Google Scholar 

  17. L.A. Takhtadzhyan, L.D. Faddeev, Essentially nonlinear one-dimensional model of classical field theory. Theoret. Math. Phys 21, 160–174 (1974). https://doi.org/10.1007/BF01035551

    Article  Google Scholar 

  18. M.G. Forest, D.W. McLaughlin, Spectral theory for the periodic sine-Gordon equation: A concrete viewpoint. J. Math. Phys. 23(7), 1248–1277 (1982). https://doi.org/10.1063/1.525509

    Article  ADS  MathSciNet  Google Scholar 

  19. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967). https://doi.org/10.1103/PhysRevLett.19.1095

    Article  ADS  Google Scholar 

  20. E.A. Overman II., D.W. McLaughlin, A.R. Bishop, Coherence and chaos in the driven damped sine-Gordon equation: Measurement of the soliton spectrum. Phys. D 19(1), 1–41 (1986). https://doi.org/10.1016/0167-2789(86)90052-7

    Article  MathSciNet  Google Scholar 

  21. R. Flesch, M.G. Forest, A. Singha, Numerical inverse spectral transform for the periodic sine-Gordon equation: Theta function solutions and their linearized stability. Phys. D Nonlinear Phenom. 48(1), 169–231 (1991). https://doi.org/10.1016/0167-2789(91)90058-H

    Article  ADS  MathSciNet  Google Scholar 

  22. F. Novkoski, C.-T. Pham, E. Falcon, Experimental observation of periodic Korteweg–de Vries solitons along a torus of fluid. Europhys. Lett. 139(5), 53003 (2022). https://doi.org/10.1209/0295-5075/ac8a12

    Article  ADS  Google Scholar 

  23. A.R. Osborne, Automatic algorithm for the numerical inverse scattering transform of the Korteweg–de Vries equation. Math. Comput. Simulat. 37(4), 431–450 (1994). https://doi.org/10.1016/0378-4754(94)00029-8

    Article  MathSciNet  Google Scholar 

  24. Y.S. Kivshar, B.A. Malomed, Z. Fei, L. Vázquez, Creation of sine-Gordon solitons by a pulse force. Phys. Rev. B 43, 1098–1109 (1991). https://doi.org/10.1103/PhysRevB.43.1098

    Article  ADS  Google Scholar 

  25. A. Barone, F. Esposito, C.J. Magee, A.C. Scott, Theory and applications of the sine-Gordon equation. Riv. del Nuovo Cim. 1(2), 227–267 (1971). https://doi.org/10.1007/BF02820622

    Article  ADS  Google Scholar 

  26. P. Suret, S. Randoux, A. Gelash, D. Agafontsev, B. Doyon, G. El, Soliton gas: Theory, numerics and experiments. arXiv:2304.06541v1 (2023)

Download references

Acknowledgements

This work is supported by the French National Research Agency (ANR SOGOOD project No. ANR-21-CE30-0061-04), and by the Simons Foundation MPS No 651463-Wave Turbulence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Tuong Pham.

Appendices

Appendix A

As a comparison with the results on the different solitons and periodic solutions to the pSG equation discussed in the main text, we here include the half-trace obtained for a sine wave of amplitude \(A=0.01\), with \(k=2\) and \(\omega =1\) on a domain of length \(L=60\). The real and imaginary parts of the trace are shown in Fig. 10 for the negative real part of the energy plane, where we observe that there is no pinching. In Fig. 11 we show the same quantity for the positive real part of the energy plane.

Fig. 10
figure 10

a Real part of the trace of \({\textbf{M}}(E)\) in the complex plane of energy, for negative \(\Re (E)\), for a low-amplitude sine wave. b Imaginary part of the trace of \({\textbf{M}}(E)\) for the same wave. Logscale colorbar


Fig. 11
figure 11

a Real part of the trace of \({\textbf{M}}(E)\) in the complex plane of energy, for positive \(\Re (E)\), for a low-amplitude sine wave. b Imaginary part of the trace of \({\textbf{M}}(E)\) for the same wave. Logscale colorbar

Appendix B

Fig. 12
figure 12

a The eigenvalues of the truncated kink with energy \(E=1\) for different values of the domain size. b Eigenvalues of the truncated kink on a domain with fixed \(L=20\) for different values of the discretization \(\Delta x\)

In this appendix, we discuss how the domain size L and the spatial discretization \(\Delta x\) affect the eigenvalues of a single infinite-line truncated kink soliton. We start varying L while keeping \(\Delta x\) fixed at 0.02. Its energy has been chosen to be \(E=1\). We can see in Fig. 12a that as the domain size L is increased, the results become more accurate. This is due to the fact that the errors due to periodicity (i.e. the mismatch at the domain ends) decreases. In Fig. 12b, we have kept the domain size value at \(L=20\) and changed the discretization \(\Delta x\). As expected, by decreasing the value of \(\Delta x\), the energies converge to a single value.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novkoski, F., Falcon, E. & Pham, CT. A numerical direct scattering method for the periodic sine-Gordon equation. Eur. Phys. J. Plus 138, 1146 (2023). https://doi.org/10.1140/epjp/s13360-023-04706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04706-7

Navigation