Skip to main content
Log in

Hawking–Page phase transition of Reissner–Nordström–de Sitter space-time

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Considering the correlation between the black hole and cosmological horizons and regarding the Reissner–Nordström–de Sitter (RN–dS) space-time as a thermodynamic system, we discuss the thermodynamic properties of the RN–dS space-time. The behavior of the thermodynamic quantities as the functions x, which is the ratio of the black hole horizon radius to the cosmological horizon radius, is investigated. We find that the coexistent curve of the Hawking–Page (HP) temperature and HP pressure is a closed curve. That means there exist the upper bounds of the HP temperature and HP pressure, which is different from that in AdS black holes. The further investigation of the HP phase transition for RN–dS space-time will help to understand the evolution and microstructure of de Sitter space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.D. Bekenstein, Black holes and entropy. Phys. Rev D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Kubiznak, R.B. Mann, P-V criticality of charged AdS black holes. JHEP 1207, 033 (2012). arXiv:1205.05592

    Article  ADS  MathSciNet  Google Scholar 

  4. R.G. Cai, L.M. Cao, L. Li, R.Q. Yang, P-V criticality in the extended phase space of Gauss–Bonnet black holes in AdS space. JHEP 09, 005 (2013). arXiv:1306.6233

    Article  ADS  Google Scholar 

  5. S. Gunasekaran, D. Kubiznak, R.B. Mann, Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization. JHEP 11, 110 (2012). arXiv:1208.6251

    Article  ADS  Google Scholar 

  6. A.M. Frassino, D. Kubiznak, R.B. Mann, Fil Simovic. Multiple reentrant phase transitions and triple points in lovelock thermodynamics. JHEP 09, 080 (2014). arXiv:1406.7015

    Article  ADS  Google Scholar 

  7. N. Altamirano, D. Kubiznak, R.B. Mann, Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition. Class. Quant. Grav 31, 042001 (2014). arXiv:1308.2672

    Article  ADS  MathSciNet  Google Scholar 

  8. N. Altamirano, D. Kubiznak, R.B. Mann, Reentrant phase transitions in rotating AdS Black Holes. Phys. Rev. D 88, 101502 (2013). arXiv:1306.5756

  9. J.D. Bairagya, K. Pal, K. Pal, T. Sarkar, The geometry of RN-AdS fluids. Phys. Lett. B 805, 135416 (2020)

    Article  MathSciNet  Google Scholar 

  10. X.H. Ge, Y. Ling, C. Niu, S.J. Sin, Thermoelectric conductivities, shear viscosity, and stability in an anisotropic linear axion model. Phys. Rev. D 92, 106005 (2015). arXiv:1412.8346

  11. R.G. Cai, S.M. Ruan, S.J. Wang, R.Q. Yang, R.H. Peng, Action growth for AdS black holes. JHEP 09, 161 (2016). arXiv:1606.08307

  12. J.L. Zhang, R.G. Cai, H.W. Yu, Phase transition and Thermodynamical geometry of Reissner-Nordström-AdS Black Holes in Extended Phase Space. Phys. Rev. D 91, 044028 (2015). arXiv:1502.01428

  13. R. Zhao, H.H. Zhao, M.S. Ma, L.C. Zhang, On the critical phenomena and thermodynamics of charged topological dilaton AdS black holes. Eur. Phys. J. C 73, 2645 (2013). arXiv:1305.3725

  14. R. Zhao, M.S. Ma, H.F. Li, L.C. Zhang, On Thermodynamics of charged and rotating asymptotically AdS black strings. Adv. High Energy Phys. 2013, 371084 (2013)

    MathSciNet  MATH  Google Scholar 

  15. S.W. Wei, Y.X. Liu, and Y.Q. Wang, Dynamic properties of thermodynamic phase transition for five-dimensional neutral Gauss-Bonnet AdS black hole on free energy landscape, arXiv:2009.05215 [gr-qc]

  16. S.H. Hendi, R.B. Mann, S. Panahiyan, and B. Eslam Panah, van der Waals like behavior of topological AdS black holes in massive gravity. Phys. Rev. D 95 (2017) 021501(R), arXiv:1702.00432

  17. A. Dehghani, S.H. Hendi, R.B. Mann, Range of novel black hole phase transitions via massive gravity: triple points and N-fold reentrant phase transitions. Phys. Rev. D 101, 084026 (2020). arXiv:2009.07980

  18. H. Ranjbari, M. Sadeghi, M. Ghanaatian, Gh. Forozani, Critical behavior of AdS Gauss–Bonnet massive black holes in the presence of external string cloud. Eur. Phys. J. C 80, 17 (2020)

    Article  ADS  Google Scholar 

  19. M. Chabab, H. El Moumni, S. Iraoui, K. Masmar, Phase transitions and geothermodynamics of black holes in dRGT massive gravity. Eur. Phys. J. C 79, 342 (2019). arXiv:1904.03532

  20. M. Chabab, H. El Moumni, S. Iraoui, K. Masmar, Behavior of Quasinormal Modes and high dimension RN-AdS Black Hole phase transition. Eur. Phys. J. C 76, 676 (2016). arXiv:1606.08524

    Article  ADS  Google Scholar 

  21. S.Z. Han, J. Jiang, M. Zhang, W.B. Liu, Photon sphere and phase transition of d-dimensional \((d\ge 5)\) charged Gauss–Bonnet AdS black holes. Commun. Math. Phys. 72, 10 (2020). arXiv:1812.11862

    Google Scholar 

  22. A. Dehyadegari, A. Sheykhi, Critical behavior of charged dilaton black holes in AdS space. Phys. Rew. D 102, 064021 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Magos and N. Breton, Thermodynamics of the Euler-Heisenberg-AdS black hole, Phys. Rew. D 102 (2020) 084011, arxiv:2009.05904

  24. S.N. Sajadi, N. Riazi, S.H. Hendi, Dynamical and thermal stabilities of nonlinearly charged AdS black holes. Eur. Phys. J. C 79, 775 (2019). arXiv:2003.13472

  25. S.H. Hendi, A. Dehghani, Criticality and extended phase space thermodynamics of AdS black holes in higher curvature massive gravity. Eur. Phys. J. C 79, 227 (2019). arXiv:1811.01018

  26. S.H. Hendi, Z.S. Taghadomi, C. Corda, New aspect of critical nonlinearly charged black hole. Phys. Rev. D 97, 084039 (2018). arXiv:1803.10767

  27. S.H. Hendi, B.E. Panah, S. Panahiyan, M.S. Talezadeh, Geometrical thermodynamics and criticality of the black holes with power-law Maxwell field. Eur. Phys. J. C 77, 133 (2017). arXiv:1612.00721

  28. S.H. Hendi, R. Moradi, Z. Armanfard, M.S. Talezadeh, Extended phase space thermodynamics and criticality: Brans–Dicke–Born–Infeld vs Einstein–Born–Infeld–dilaton black holes. Eur. Phys. J. C 76, 263 (2016). arXiv:1511.02761

  29. S.H. Hendi, S. Panahiyan, B.E. Panah, Z. Armanfard, Phase transition of charged Black Holes in Brans–Dicke theory through geometrical thermodynamics. Eur. Phys. J. C 76, 396 (2016). arXiv:1511.00598

  30. D.C. Zou, R.H. Yue, M. Zhang, Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity. Eur. Phys. J. C 77, 256 (2017). arXiv:1612.08056

  31. J.F. Xu, L.M. Cao, Y.P. Hu, P-V criticality in the extended phase space of black holes in massive gravity. Phys. Rev. D 91, 124033 (2015). arXiv:1506.03578

  32. S.W. Wei, Y. X Liu, A general thermodynamic geometry approach for rotating Kerr anti-de Sitter black holes, arXiv:2106.06704

  33. H. Moradopour, A.H. Ziaie, I.P. Lobo, J.P. M.Graca, U.K. Sharma, and A.S. Jahromi, The third law of thermodynamics and black holes, arXiv:2106.00378

  34. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170

  36. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131

  37. E. Spallucci, A. Smailagic, Maxwell’s equal area law for charged Anti-de Sitter black holes. J. Grav 2013, 525696 (2013). arXiv:1305.3379

  38. N. Altamirano, D. Kubiznak, R.B. Mann, Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume. Galaxies 2, 89 (2014)

    Article  ADS  Google Scholar 

  39. Y.P. Hu, L. Cai, X. Liang, and H.S. Zhang, Divergence behavior of thermodynamic curvature scalar at critical point in the extended phase space of generic black holes, arXiv:2010.09363

  40. R. Maity, P. Roy, T. Sarkar, Black hole phase transitions and the chemical potential. Phys. Lett. B 765, 386 (2017)

    Article  ADS  Google Scholar 

  41. H. Liu, X.H. Meng, P-V criticality in the extended phase space of charged accelerating AdS black holes. Mod. Phys. Lett. A 31, 1650199 (2016). arXiv:1607.00496

  42. A. Sahay, R. Jha, Geometry of criticality, supercriticality and Hawking-Page transitions in Gauss–Bonnet–AdS black holes. Phys. Rev. D 96, 126017 (2017). arXiv:1707.03629

  43. S. Mbarek, R.B. Mann, Reverse Hawking–Page phase transition in de Sitter black holes. JHEP 02, 103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  44. W. Xu, C. Wang, B. Zhu, Effects of Gauss–Bonnet term on the phase transition of a Reissner–Nordström–AdS black hole in (3+1) dimensions. Phys. Rev. D 99, 044010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  45. B.Y. Su, Y.Y. Wang, N. Li, The Hawking–Page phase transitions in the extended phase space in the Gauss–Bonnet gravity. Eur. Phys. J. C 80, 305 (2020). arXiv:1905.07155

  46. Y.Y. Wang, B.Y. Su, N. Li, Hawking–Page phase transitions in four-dimensional Einstein–Gauss–Bonnet gravity. Phys. Dark Univ. 31, 100769 (2021). arXiv:2008.01985

  47. A. Lala, H. Rathi, D. Roychowdhury, JT gravity and the models of Hawking–Page transition for 2D black holes. Phys. Rev. D 102, 104024 (2020). arXiv:2005.08018

  48. S.W. Wei, Y.X. Liu, Y.X. Liu, Novel dual relation and constant in Hawking–Page phase transitions. Phys. Rev. D 102, 104011 (2020). arXiv:2006.11503

  49. O. Aharony, E.Y. Urbach, M. Weiss, Generalized Hawking–Page transitions. JHEP 1908, 018 (2019). arXiv:1904.07502

  50. D.D. Biasio and D. Lust, Geometric flow equations for Schwarzschild-AdS space-time and Hawking–Page phase transition, arXiv:2006.03076

  51. Y. Wu, W. Xu, Effect of dark energy on Hawking–Page transition. Phys. Dark Univ. 27, 100470 (2020)

    Article  Google Scholar 

  52. W. Yan, Z.R. Huang, N. Li, Hawking-Page phase transitions of charged AdS black holes surrounded by quintessence. Chin. Phys. C 45, 015104 (2021)

    Article  ADS  Google Scholar 

  53. A. Belhaj, A.E. Balali, W.E. Hadri, T.L. Emilio, On universal constants of AdS Black Holes from Hawking–Page phase transition. Phys. Lett. B 811, 135871 (2020). arXiv:2010.07837

  54. P. Wang, H. Wu, H. Yang, F. Yao, Extended phase space thermodynamics for Black Holes in a cavity. JHEP 09, 1 (2020). arXiv:2006.14349

  55. W.B. Zhao, G.R. Liu and N. Li, Hawking–Page phase transitions of the black holes in a cavity, arXiv:2012.13921

  56. C. Copetti, A. Grassi, Z. Komargodski and L. Tizzano, Delayed deconfinement and the Hawking–Page transition, arXiv:2008.04950

  57. S. Sahoo, L.H. Etienne, S. Plugge and M. Franz, Traversable wormhole and Hawking–Page transition in coupled complex SYK model, arXiv:2006.06019

  58. Z.M. Xu, B. Wu and W.L. Yang, Thermodynamics curvature in the phase transition for the AdS black hole, arXiv:2009.00291

  59. B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann, J. Traschen, Thermodynamic volumes and isoperimetric inequalities for de Sitter Black Holes. Phys. Rev. D 87, 104017 (2013). arXiv:1301.5926

  60. Y. Sekiwa, Thermodynamics of de Sitter black holes: thermal cosmological constant. Phys. Rev. D 73, 084009 (2006). arXiv:hep-th/0602269

  61. D. Kubiznak, F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions. Class. Quant. Grav 33, 245001 (2016). arXiv:1507.08630

  62. J. McInerney, G. Satishchandran, J. Traschen, cosmography of KNdS Black Holes and isentropic phase transitions. Class. Quant. Grav 33, 105007 (2016). arXiv:1509.02343

  63. Y.B. Ma, Y. Zhang, L.C. Zhang, L. Wu, Y. Gao, Y. Pan, Phase transition and entropic force of de Sitter black hole in massive gravity. Eur. Phys. J. C 81, 22 (2021). arXiv:2009.12726

  64. Y.B. Ma, Y. Zhang, L.C. Zhang, L. Wu, Y.M. Huang, Y. Pan, Thermodynamic properties of higher-dimensional dS black holes in dRGT massive gravity. Eur. Phys. J. C 80, 213 (2020). arXiv:2003.05483

  65. R.G. Cai, Cardy-Verlinde formula and thermodynamics of black holes in de Sitter spaces. Nucl. Phys. B 628, 375 (2002). arXiv:hep-th/0112253

  66. P. Krtous, V.P. Frolov, D. Kubiznak, Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes. Nucl. Phys. B 934, 7 (2018). arXiv:1803.02485

  67. P. Kanti, T. Pappas, Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de-Sitter Black-Hole. Phys. Rev. D 96, 024038 (2017). arXiv:1705.09108

  68. M. Chabab, H.E. Moumni, J. Khalloufi, On Einstein-non linear-Maxwell-Yukawa de-Sitter black hole thermodynamics. Nucl. Phys. B 963, 115305 (2021). arXiv:2001.01134

  69. C.Y. Zhang, P.C. Li, M.Y. Guo, Greybody factor and power spectra of the Hawking radiation in the novel 4 D Einstein–Gauss–Bonnet de-Sitter gravity Eur. Phys. J. C 80, 1 (2020). arXiv:2003.13068

  70. M.S. Ali and S.G. Ghosh, Thermodynamics and phase transition of rotating Hayward-de Sitter black holes, arXiv:1906.11284

  71. L.C. Zhang, R. Zhao, The entropic force in Reissner-Nordström-de Sitter spacetime. Phys. Lett. B 797, 134798 (2019)

    Article  MathSciNet  Google Scholar 

  72. X.Y. Guo, H.F. Li, L.C. Zhang, R. Zhao, Thermodynamics and phase transition of in the Kerr-de Sitter black hole. Phys. Rev. D 91 (2015)

  73. X.Y. Guo, H.F. Li, L.C. Zhang, R. Zhao, The critical phenomena of charged rotating de Sitter black holes. Class. Quantum Grav 33, 135004 (2016)

    Article  ADS  Google Scholar 

  74. R.G. Cai, J.Y. Ji, K.S. Soh, Action and entropy of black holes in spacetimes with cosmological constant. Class. Quantum. Grav 15, 2783 (1998). arXiv:gr-qc/9708062

  75. S. Mbarek, R.B. Mann, Reverse Hawking–Page phase transition in de Sitter Black Holes. JHEP 2, 1 (2019). arXiv:1808.03349

  76. X.Y. Guo, H.F. Li, L.C. Zhang, R. Zhao, Entropy of higher dimensional charged Gauss–Bonnet Black hole in de Sitter Space. Commun. Theor. Phys. 72, 8 (2020). arXiv:1803.09456

Download references

Acknowledgements

We would like to thank Prof. Ren Zhao and Meng-Sen Ma for their indispensable discussions and comments. This work was supported by the Natural Science Foundation of China (Grant Nos. 11705106, 12075143), the Scientific Innovation Foundation of the Higher Education Institutions of Shanxi Province (Grant Nos. 2020L0471, 2020L0472), and the Science Technology Plan Project of Datong City, China (Grant No. 2020153).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, HL., Du, YZ., Li, HF. et al. Hawking–Page phase transition of Reissner–Nordström–de Sitter space-time. Eur. Phys. J. Plus 137, 386 (2022). https://doi.org/10.1140/epjp/s13360-022-02588-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02588-9

Navigation