Skip to main content
Log in

Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nördstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four space-time dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Kastor, S. Ray and J. Traschen, Enthalpy and the Mechanics of AdS Black Holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. B.P. Dolan, Compressibility of rotating black holes, Phys. Rev. D 84 (2011) 127503 [arXiv:1109.0198] [INSPIRE].

    ADS  Google Scholar 

  9. M. Cvetič, G. Gibbons, D. Kubiznak and C. Pope, Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].

    ADS  Google Scholar 

  10. B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?, to appear in Open Questions in Cosmology, G.J. Olmo ed., InTech (2012) [arXiv:1209.1272] [INSPIRE].

  11. C.S. Peca and J.P.S. Lemos, Thermodynamics of Reissner-Nordstrom anti-de Sitter black holes in the grand canonical ensemble, Phys. Rev. D 59 (1999) 124007 [gr-qc/9805004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. C. Niu, Y. Tian and X.-N. Wu, Critical Phenomena and Thermodynamic Geometry of RN-AdS Black Holes, Phys. Rev. D 85 (2012) 024017 [arXiv:1104.3066] [INSPIRE].

    ADS  Google Scholar 

  13. R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].

    ADS  Google Scholar 

  14. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. R.B. Mann and S.F. Ross, Cosmological production of charged black hole pairs, Phys. Rev. D 52 (1995) 2254 [gr-qc/9504015] [INSPIRE].

    ADS  Google Scholar 

  16. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S. Hawking, C. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev. D 61 (2000) 104013 [hep-th/9912259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934) 425 [INSPIRE].

    ADS  Google Scholar 

  21. G.W. Gibbons, Aspects of Born-Infeld theory and string/M theory, Rev. Mex. Fis. 49S1 (2003) 19 [hep-th/0106059] [INSPIRE].

    Google Scholar 

  22. S. Fernando and D. Krug, Charged black hole solutions in Einstein- Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T.K. Dey, Born-Infeld black holes in the presence of a cosmological constant, Phys. Lett. B 595 (2004) 484 [hep-th/0406169] [INSPIRE].

    ADS  Google Scholar 

  24. R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. S. Fernando, Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble, Phys. Rev. D 74 (2006) 104032 [hep-th/0608040] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and phase transitions in the Born-Infeld-anti-de Sitter black holes, Phys. Rev. D 78 (2008) 084002 [arXiv:0805.0187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Kastor, S. Ray and J. Traschen, Smarr Formula and an Extended First Law for Lovelock Gravity, Class. Quant. Grav. 27 (2010) 235014 [arXiv:1005.5053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Rasheed, Nonlinear electrodynamics: Zeroth and first laws of black hole mechanics, hep-th/9702087 [INSPIRE].

  29. N. Breton, Smarrs formula for black holes with non-linear electrodynamics, Gen. Rel. Grav. 37 (2005) 643 [gr-qc/0405116] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. W. Yi-Huan, Energy and first law of thermodynamics for Born-Infeld AdS black hole, Chinese Phys. B19 (2010) 090404.

    Google Scholar 

  31. R. Banerjee, S. Ghosh and D. Roychowdhury, New type of phase transition in Reissner Nordstrom - AdS black hole and its thermodynamic geometry, Phys. Lett. B 696 (2011) 156 [arXiv:1008.2644] [INSPIRE].

    ADS  Google Scholar 

  32. A. Lala and D. Roychowdhury, Ehrenfests scheme and thermodynamic geometry in Born-Infeld AdS black holes, Phys. Rev. D 86 (2012) 084027 [arXiv:1111.5991] [INSPIRE].

    ADS  Google Scholar 

  33. R. Banerjee and D. Roychowdhury, Critical phenomena in Born-Infeld AdS black holes, Phys. Rev. D 85 (2012) 044040 [arXiv:1111.0147] [INSPIRE].

    ADS  Google Scholar 

  34. R. Banerjee and D. Roychowdhury, Critical behavior of Born Infeld AdS black holes in higher dimensions, Phys. Rev. D 85 (2012) 104043 [arXiv:1203.0118] [INSPIRE].

    ADS  Google Scholar 

  35. O. Mišković and R. Olea, Thermodynamics of Einstein-Born-Infeld black holes with negative cosmological constant, Phys. Rev. D 77 (2008) 124048 [arXiv:0802.2081] [INSPIRE].

    ADS  Google Scholar 

  36. H. Zhang and X.-Z. Li, Critical Exponents of Gravity with Quantum Perturbations, arXiv:1208.0106 [INSPIRE].

  37. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Westview Press, New York, U.S.A. (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kubizňák.

Additional information

ArXiv ePrint: 1208.6251

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunasekaran, S., Kubizňák, D. & Mann, R.B. Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization. J. High Energ. Phys. 2012, 110 (2012). https://doi.org/10.1007/JHEP11(2012)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)110

Keywords

Navigation