Skip to main content
Log in

Hawking–Page phase transition of four-dimensional de-Sitter spacetime with nonlinear source

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The interplay between a dS black hole horizon and cosmological horizon in a dS spacetime introduces distinctive thermodynamic behaviors (for example the well-known upper bounds of mass and entropy (Dinsmore et al. in Class. Quant. Grav. 37(5), 2020)). Based on this point, we present the Hawking–Page (HP) phase transition of the four-dimensional dS spacetime with nonlinear charge correction when the effective pressure is fixed, and analyze the effects of different effective pressures and nonlinear charge corrections on HP phase transition. The evolution of this system undergoing the HP phase transition is also investigated. We find that the coexistent curve of HP phase transition is a closed one with two different branches. That indicates there exist the upper bounds of the HP temperature and HP pressure, which is completely distinguished with that in AdS spacetime. With decreasing the distance between two horizons, the dS spacetime at the coexistent curve of HP phase transition is going along with different branches. Furthermore, we also explore the influences of charge and nonlinear charge correction on the coexistent curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577–588 (1983)

    Article  ADS  Google Scholar 

  2. J. Dinsmore, P. Draper, D. Kastor, Y. Qiu, J. Traschen, Class. Quant. Grav. 37, 5 (2020). arXiv:1907.00248

    Article  Google Scholar 

  3. R.-G Cai, L.-M Cao, L. Li, and R.-Q Yang, JHEP, 9 (2013) 1, arXiv:1306.6233

  4. S.-W. Wei, Y.-X. Liu, Phys. Rev. D 87, 044014 (2013). arXiv:1209.1707

    Article  ADS  Google Scholar 

  5. M.M. Caldarelli, G. Cognola, D. Klemm, Class. Quant. Grav. 17, 399 (2000). arXiv:9908022

    Article  ADS  Google Scholar 

  6. D. Kubiznak, R.B. Mann, JHEP 1207, 033 (2012). arXiv:1205.0559

    Article  ADS  Google Scholar 

  7. S.-W. Wei, Y.-X. Liu, Phys. Rev. Lett 115, 111302 (2015)

    Article  ADS  Google Scholar 

  8. R. Banerjee, D. Roychowdhury, JHEP 11, 004 (2011). arXiv:1109.2433

    Article  ADS  Google Scholar 

  9. S.H. Hendi, R.B. Mann, S. Panahiyan, B. Eslam Panah, Phys. Rev. D 95, 021501 (2017). arXiv:1702.00432

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Bhattacharya, B.R. Majhi, S. Samanta, Phys. Rev. D 96, 084037 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. X.-X. Zeng, L.-F. Li, Phys. Lett. B 764, 100 (2017)

    Article  ADS  Google Scholar 

  12. S.H. Hendi, Z.S. Taghadomi, C. Corda, Phys. Rev. D 97, 084039 (2018). arXiv:1803.10767

    Article  ADS  MathSciNet  Google Scholar 

  13. J.-L. Zhang, R.-G. Cai, H.-W. Yu, Phys. Rev. D 91, 044028 (2015). arXiv:1502.01428

    Article  ADS  Google Scholar 

  14. P. Cheng, S.-W. Wei, Y.-X. Liu, Phys. Rev. D 94, 024025 (2016). arXiv:1603.08694

    Article  ADS  MathSciNet  Google Scholar 

  15. D.-C. Zou, Y.-Q. Liu, R.-H. Yue, Eur. Phys. J. C 77, 365 (2017). arXiv:1702.08118

    Article  ADS  Google Scholar 

  16. B.P. Dolan, Class. Quant. Grav. 31, 135012 (2014). arXiv:1308.2672

    Article  ADS  Google Scholar 

  17. N. Altamirano, D. Kubiznak, R.B. Mann, Phys. Rev. D 88, 101502 (2013). arXiv:1306.5756

    Article  ADS  Google Scholar 

  18. N. Altamirano, D. Kubiznak, R.B. Mann, Z. Sherkatghanad, Class. Quant. Grav. 31, 042001 (2014). arXiv:1308.2672

    Article  ADS  Google Scholar 

  19. Y.-Z. Du, R. Zhao, L.-C. Zhang, Eur. Phys. J. C 82, 4 (2022). arXiv:2104.10309

  20. Y. Zhang, W.-Q. Wang, Y.-B. Ma, J. Wang, Adv. H. E. Phys. 2020, 7263059 (2020). arXiv:2004.06796

    Google Scholar 

  21. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998). arXiv:hep-th/9803131

    Article  MathSciNet  Google Scholar 

  22. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170

    Article  ADS  MathSciNet  Google Scholar 

  23. S.-W. Wei, Y.-X. Liu, Phys. Rev. D 102, 104011 (2020). arXiv:2006.11503

    Article  ADS  MathSciNet  Google Scholar 

  24. Y.Y. Wang, B.Y. Su, N. Li, Phys. Dark. Univ. 31, 100769 (2021). arXiv:2008.01985

    Article  Google Scholar 

  25. W.-B. Zhao, G.-R. Liu, N. Li, Eur. Phys. J. Plus 136, 981 (2021). arXiv:2012.13921

    Article  Google Scholar 

  26. B.-Y Su, N. Li, Nucl. Phys. B 979, 115782 (2022). arXiv:2105.06670

  27. F. Simovic, R.B. Mann, JHEP 2019, 136 (2019). arXiv:1904.04871

    Article  Google Scholar 

  28. P. Wang, H.-W Wu, H.-T Yang, and F.-Y Yao, JHEP 2020, 154 (2020), arXiv:2006.14349

  29. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936). arXiv:hep-th/0605038

    Article  ADS  Google Scholar 

  30. H. Yajima, T. Tamaki, Phys. Rev. D 63, 064007 (2001). arXiv:gr-qc/0005016

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  32. V.A. De Lorenci, M.A. Souza, Phys. Lett. B 512, 417 (2001)

    Article  ADS  Google Scholar 

  33. V.A. De Lorenci, R. Klippert, Phys. Rev. D 65, 064027 (2002)

    Article  ADS  Google Scholar 

  34. M. Novello et al., Class. Quantum Gravit. 20, 859 (2003)

    Article  ADS  Google Scholar 

  35. M. Novello, E. Bittencourt, Phys. Rev. D 86, 124024 (2012)

    Article  ADS  Google Scholar 

  36. M. Cavaglia, S. Das, R. Maartens, Class. Quantum Gravit. 20, L205 (2003)

    Article  ADS  Google Scholar 

  37. S.H. Hendi, M. Momennia, Eur. Phys. J. C 75, 54 (2015). arXiv:1501.04863

    Article  ADS  Google Scholar 

  38. S.H. Hendi, R. Naderi, Phys. Rev. D. 91, 024007 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Y. Zhang, L.-C. Zhang, R. Zhao, Mod. Phys. Lett. A 31, 1950254 (2019). arXiv:1910.14223

    Article  Google Scholar 

  40. H.-H. Zhao, L.-C. Zhang, Fang Liu. Commun. Theor. Phys. 73(9), 095401 (2021). arXiv:1704.05167

    Article  ADS  Google Scholar 

  41. M.S. Ali, S.G. Ghosh, Eur. Phys. J. Plus 137(4), 486 (2022). arXiv:1906.11284

Download references

Acknowledgements

We would like to thank Prof. Ren Zhao and Meng-Sen Ma for their indispensable discussions and comments. This work was supported by the National Natural Science Foundation of China (Grant No. 11705106, 11475108, 12075143), the Scientific Innovation Foundation of the Higher Education Institutions of Shanxi Province (Grant Nos. 2020L0471, 2020L0472), and the Science Technology Plan Project of Datong City, China (Grant Nos. 2020153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Fan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YZ., Li, HF. & Zhang, LC. Hawking–Page phase transition of four-dimensional de-Sitter spacetime with nonlinear source. Eur. Phys. J. Plus 137, 574 (2022). https://doi.org/10.1140/epjp/s13360-022-02664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02664-0

Navigation