Skip to main content
Log in

Spatial patterns in a vegetation model with internal competition and feedback regulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The vegetation patterns are a characteristic particularity of semiarid zones, which can be the future of modern ecology for its importance. This paper aims to study a diffusive vegetation model for the subject of studying the complex patterns generated by the presence of Turing-Hopf bifurcation. The main focus is on analyzing the effect of the locative internal rivalry between plants and feedback regulation on the pattern formations. The cross-diffusion produced by the positive feedback regulation generates surprising dynamics such as Hopf bifurcation, Turing bifurcation, Turing-Hopf bifurcation, which confirms the imbalance of the distribution of the vegetation in the semi-desert regions. For analyzing the spatiotemporal behavior near the Turing-Hopf bifurcation point, the Amplitude equation restricted at this point is used. Further, by using numerical simulations, the complex dynamics induced by the positive feedback redistribution and inner competition are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. H. Amann, Dynamics theory of quasilinear parabolic equation. I. Abstract evolution equation, Nonlinear Anal. 12, 219–250 (1997)

  2. B. Adams, J. Carr, Spatial pattern formation in a model of vegetation-climate feedback. Nonlinearity 16(4), 13–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Barbier, P. Couteron, J. Lejoly, V. Deblauwe, O. Lejeune, Self-organized vegetation patterning as a fingerprint of climate and human impact on semiarid ecosystems. J. Ecol. 94(3), 537–547 (2006)

    Article  Google Scholar 

  4. I. Boudjema, S. Djilali, Turing-Hopf bifurcation in Gauss-type model with cross-diffusion and its application. Nonlinear Stud. 25(3), 665–687 (2018)

    MathSciNet  MATH  Google Scholar 

  5. F. Borgogno, P. D’Odorico, F. Laio, L. Ridolfi, Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 47, 1–36 (2009)

    Article  Google Scholar 

  6. M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851 (1993)

    Article  ADS  MATH  Google Scholar 

  7. S. Djilali, Impact of prey herd shape on the predator-prey interaction. Chaos Solitons Fract. 120, 139–148 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Djilali, S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior. Acta Applicandae Mathematicae. 169, 125–143 (2020)

    Article  MathSciNet  Google Scholar 

  9. S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math. Meth. Appl. Scien. 43(5), 2233–2250 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. K. Gowda, H. Riecke, M. Silber, Transitions between patterned states in vegetation models for semiarid ecosystems. Phys. Rev. E 89, 022701 (2014)

    Article  ADS  Google Scholar 

  11. G.Q. Sun, C.H. Wang, L.L. Chang, Y.P. Wu, L. Li, Effects of feedback regulation on vegetation patterns in semi-arid environments. Appl. Math. Model. 61, 200–215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. HillerisLambers, M.G. Rietkerk, F. van den Bosch, H. Prins, H. Kroon, Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61 (2001)

    Article  Google Scholar 

  13. C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Article  Google Scholar 

  14. X. Liu, T. Zhang, X. Meng, T. Zhang, Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis. Phys. A 496, 446–460 (2018)

    Article  MathSciNet  Google Scholar 

  15. B. Liu, R. Wu, L. Chen, Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model. Chaos 28, 113118 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. N.I. Muskhelishvili, Singular Integral Equations : Boundary Problems of Function Theory and Their Application to Mathematical Physics (Dover Publications, New York, 2013)

    Google Scholar 

  17. A. Pazy, Semi Groups of Liner Operators and Applications to Partial Differential Equations (Springer, Berlin, 2012)

    Google Scholar 

  18. J.A. Sherratt, Pattern solutions of the Klausmeier model for banded vegetation in semiarid environments IV: slowly moving patterns and their stability. SIAM, J. Appl. Math. 73, 330–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.A. Sherratt, G.J. Lord, Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1–11 (2007)

    Article  MATH  Google Scholar 

  20. J.A. Sherratt, Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds. Proc. R. Soc. A 467, 3272–3294 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J.A. Sherratt, Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions. Physica D 242, 30–41 (2013)

    Article  ADS  MATH  Google Scholar 

  22. S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative. Adv. Differ. Equ. (2021). https://doi.org/10.1186/s13662-020-03177-9

    Article  MathSciNet  Google Scholar 

  23. F. Souna, A. Lakmeche, S. Djilali, Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting. Chaos Solitons Fract. 140, 110180 (2020)

    Article  MathSciNet  Google Scholar 

  24. S. Djilali, Spatiotemporal patterns induced by cross-diffusion in predator-prey model with prey herd shape effect. Int. J. Biomath. 13(4), 2050030 (2020). https://doi.org/10.1142/S1793524520500308

    Article  MathSciNet  Google Scholar 

  25. S. Bentout, Y. Chen, S. Djilali, Global dynamics of an SEIR model with two age structures and a nonlinear incidence. Acta Appl. Math. (2021). https://doi.org/10.1007/s10440-020-00369-z

    Article  MathSciNet  Google Scholar 

  26. S. Bentout, S. Djilali, B. Ghanbari, Backward, Hopf bifurcation in a heroin epidemic model with treat age. Int. J. Modeling Simul. Sci. Comput. (2020). https://doi.org/10.1142/S1793962321500185

    Article  Google Scholar 

  27. G. Sun, L. Li, Z. Zhang, Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73, 2207–2219 (2013)

    Article  MathSciNet  Google Scholar 

  28. F. Souna, S. Djilali, F. Charif, Mathematical analysis of a diffusive predator-prey model with herd behavior and prey escaping. Math. Model. Natural Phenom. (2018). https://doi.org/10.1051/mmnp/2019044

    Article  Google Scholar 

  29. Y. Song, T. Zhang, Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications. Commun. Nonlinear Sci. Numer. Simul. 33, 229–258 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Y. Song, H. Jiang, Q.X. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Tang, Y. Song, T. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion. Nonlinear Dyn. 86(1), 73–89 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.M. Turing, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 237, 37–72 (1952)

    ADS  Google Scholar 

  33. C. Valentin, J.M. d’Herbes, J. Poesen, Soil and water components of banded vegetation patterns. Catena 37, 1–24 (1999)

    Article  Google Scholar 

  34. S. van der Stelt, A. Doelman, G.M. Hek, J. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier-gray-scott model. J. Nonlinear Sci. 23, 39–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001)

    Article  ADS  Google Scholar 

  36. X. Wang, W. Wang, G. Zhang, Vegetation pattern formation of a water-biomass model. Commun. Nonlinear Sci. Numer. Simulat. 42, 571–584 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. X. Wang, G. Zhang, Vegetation pattern formation in seminal systems due to internal competition reaction between plants. J. Theoret. Biol. 458, 10–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Kuniya, T.M. Touaoula, Global stability for a class of functional differential equations with distributed delay and non-monotone bistable nonlinearity. Math. Biosci. Eng. 17(6), 7332–7352 (2020)

    Article  MathSciNet  Google Scholar 

  39. T.M. Touaoula, Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Commun. Pure Appl. Anal. 19(5), 2473–2490 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. M.N. Frioui, T.M. Touaoula, B.E. Ainseba, Global dynamics of an age-structured model with relapse. Discrete Contin. Dyn. Syst. Ser. B 25(6), 2245–2270 (2020)

    MathSciNet  MATH  Google Scholar 

  41. N. Bessonov, G. Bocharov, T.M. Touaoula, S. Trofimchuk, V. Volpert, Delay reaction-diffusion equation for infection dynamics. Discrete Contin. Dyn. Syst. Ser. B 24(5), 2073–2091 (2019)

    MathSciNet  MATH  Google Scholar 

  42. T.M. Touaoula, Global stability for a class of functional differential equations (Application to Nicholson’s blowflies and Mackey-Glass models). Discrete Contin. Dyn. Syst. 38(9), 4391–4419 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. T.M. Touaoula, M.N. Frioui, N. Bessonov, V. Volpert, Dynamics of solutions of a reaction-diffusion equation with delayed inhibition. Discrete Contin. Dyn. Syst.-S 13(9), 2425–2442 (2018)

    MathSciNet  MATH  Google Scholar 

  44. M.N. Frioui, S.E.H. Miri, T.M. Touaoula, Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response. J. Appl. Math. Comput. 58(5–6), 47–73 (2017)

    MathSciNet  MATH  Google Scholar 

  45. P. Michel, T.M. Touaoula, Asymptotic behavior for a class of the renewal nonlinear equation with diffusion. Math. Methods Appl. Sci. 36(3), 323–335 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. I. Boudjema, T.M. Touaoula, Global stability of an infection and vaccination age-structured model with general nonlinear incidence. J. Nonlinear Funct. Anal. 2018(33), 1–21 (2018)

    Google Scholar 

  47. M. Banerjee, S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Biosci. 236(1), 64–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Banerjee, S. Ghorai, N. Mukherjee, Study of cross-diffusion induced Turing patterns in a ratio-dependent prey-predator model via amplitude equations. Appl. Math. Model. 55, 383–399 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Banerjee, Turing and non-turing patterns in two-dimensional prey-predator models. In: Banerjee S., Rondoni L. (eds) Applications of Chaos and nonlinear dynamics in science and engineering - Vol. 4 (2015) Understanding complex systems. Springer, Cham. https://doi.org/10.1007/978-3-319-17037-4_8

Download references

Acknowledgements

S.Bentout, S. Djilali are partially supported by the DGRSDT of Algeria No. C00L03UN130120200004

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Appendix

Appendix

$$\begin{aligned}&\begin{array}{l} \tau _0=q_1 q_1 ^* + q_2 q_2 ^*, ~~~~ {\overline{\mu }}= q_1 q_1 ^* \left( \alpha ^{(2)}_{11}+\gamma ^{(2)}\vartheta ^2\right) +q_1 q_2 ^* \alpha ^{(2)}_{21}\\ +q_2 q_1 ^* \left( \alpha ^{(2)}_{12}-\gamma ^{(2)}\beta \vartheta ^2\right) +q_2 q_2 ^* \alpha ^{(2)}_{22},\\ C= q_1 ^* (2\alpha _1 q_1 ^2 +\alpha _2 q_1 q_2 +2\alpha _3 q_2 ^2)+q_2 ^* (2\beta _1 q_1 ^2 +\beta _2 q_1 q_2 + 2 \beta _3 q_2 ^2 ),\\ g_1 '= \left( \Theta _{1T}\Theta _{2T}+\Theta _{3}\Theta _{4}\right) \left( q_1 ^* (2\alpha _1 q_1 + \alpha _2 q_2)+q_2 ^* (2\beta _1 q_1 +\beta _2 q_2 ) \right) \\ \quad + \left( \Theta _{2T}+\Theta _{4}\right) \left( q_1 ^* (\alpha _2 q_1 + 2\alpha _3 q_2)+q_2 ^* (\beta _2 q_1 +2\beta _3 q_2 ) \right) +3\alpha _4 q_1 ^3,\\ g_2 '= \left( \Theta _{1T}\Theta _{2T}+\Theta _{3}\Theta _{4}\right) \left( q_1 ^* (2\alpha _1 q_1 + \alpha _2 q_2)+q_2 ^* (2\beta _1 q_1 +\beta _2 q_2 ) \right) \\ \quad + \left( \Theta _{2T}+\Theta _{6}\right) \left( q_1 ^* (\alpha _2 q_1 + 2\alpha _3 q_2)+q_2 ^* (\beta _2 q_1 +2\beta _3 q_2 ) \right) +6\alpha _4 q_1 ^3,\\ g_3 '= \Theta _{1H} \Theta _{2H}\left( 2q_1 ^* (\alpha _1 q_1 + \alpha _3 q_2)+2q_2 ^* (\beta _1 q_1 +\beta _3 q_2 ) \right) \\ \quad + \Theta _{2H}( q_1 + q_2)\left( q_1 ^* \alpha _2+q_2 ^* \beta _2 \right) +6(q_1 ^* \alpha _4 +q_2 ^* \beta _4)q_1 |p_1 |^2. \end{array} \\&\begin{array}{l} h=\frac{C}{\tau _0 q_1}, ~~~ g_1= \frac{g_1 '}{\tau _0 q_1 ^2}, ~~~ g_2= \frac{g_2 '}{\tau _0 q_1 ^2} , ~~~ g_3= \frac{g_3 '}{\tau _0 p_1 ^2}, \\ \xi =\frac{q_1p_2 ^2(R-R_{H,0})\alpha ^{(1)} _{21}}{q_1 p_1 ^* +q_2 p_2 ^*},\\ \mu = q_1 q_1 ^* \left( \alpha ^{(1)}_{11} (R-R_{H,0})+(\gamma -\gamma _T ^*) \vartheta ^2\right) +q_1 q_2 ^* \alpha ^{(1)}_{21}(R-R_{H,0})\\ \quad +q_2 q_1 ^* \left( \alpha ^{(1)}_{12} (R-R_{H,0})-(\gamma -\gamma _T ^*)\beta \vartheta ^2\right) +q_2 q_2 ^* \alpha ^{(1)}_{22},\\ g_{01}=\frac{1}{(q_1 p_1 ^* +q_2 p_2 ^*)q_1 ^2}\left( p_1 ^* \left( (2 \alpha _1 {\overline{p}}_1 +\alpha _2 {\overline{p}}_2)\Theta _7 \Theta _8 \right. \right. \\ \quad \left. +( \alpha _2 {\overline{p}}_1 +2\alpha _3 {\overline{p}}_2)\Theta _8 +3 \alpha _4 |p_1|^2 p_1 \right) \\ \quad \left. +p_2 ^2 \left( (2 \beta _1 {\overline{p}}_1 +\beta _2 {\overline{p}}_2)\Theta _7 \Theta _8 \right. \right. \\ \quad \left. \left. +( \beta _2 {\overline{p}}_1 +2\beta _3 {\overline{p}}_2)\Theta _8 +3 \beta _4 |p_1|^2 p_1\right) \right) ,\\ g_{02}=\frac{1}{(q_1 p_1 ^* +q_2 p_2 ^*)q_1 ^2}\left( p_1 ^* \left( (2 \alpha _1 {\overline{q}}_1 +\alpha _2 {\overline{q}}_2)\Theta _9 \Theta _{10} +( \alpha _2 {\overline{q}}_1 +2\alpha _3 {\overline{q}}_2)\Theta _{10} +3 \alpha _4 |q_1|^2 p_1 \right) \right. \\ \quad +p_2 ^2 \left( (2 \beta _1 {\overline{q}}_1 \right. \\ \quad \left. \left. +\beta _2 {\overline{q}}_2)\Theta _9 \Theta _{10} +( \beta _2 {\overline{q}}_1 +2\beta _3 {\overline{q}}_2)\Theta _{10}+3 \beta _4 |q_1|^2 p_1\right) \right) , \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djilali, S., Bentout, S., Ghanbari, B. et al. Spatial patterns in a vegetation model with internal competition and feedback regulation. Eur. Phys. J. Plus 136, 256 (2021). https://doi.org/10.1140/epjp/s13360-021-01251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01251-z

Navigation