Skip to main content
Log in

Spatiotemporal Patterns in a Diffusive Predator-Prey Model with Prey Social Behavior

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Our aim in this paper is to investigate the behavior of pattern formation for a predator-prey model with social behavior and spatial diffusion. Firstly, we give some solution behavior where the non-existence of a non-constant steady state solution has been proved for some values of the diffusion coefficients. On the other hand, by using the Leray-Schauder degree theory the existence of the non-constant steady-state solution has been proved under a suitable conditions on the diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ajraldi, V., Pittavino, M., Venturino, E.: Modeling herd behavior in population systems. Nonlinear Anal., Real World Appl. 12(4), 2319–2338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, Q., Jiang, W.: Turing-Hopf bifurcation and spatio-temporal patterns of a ratio-dependent Holling-Tanner system with diffusion (2017). arXiv:1711.02787 [math.DS]

  3. Boudjema, I., Djilali, S.: Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application. Nonlinear Stud. 25(3), 665–687 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Braza, A.P.: Predator-prey dynamics with square root functional responses. Nonlinear Anal., Real World Appl. 13, 1837–1843 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cagliero, E., Venturino, E.: Ecoepidemics with infected prey in herd defense: the harmless and toxic cases. Int. J. Comput. Math. 93, 108–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, X., Jiang, W.: Turing-Hopf bifurcation and spatiotemporal patterns in a diffusive predator-prey system with Crowley-Martin functional response. Nonlinear Anal., Real World Appl. 43, 428–450 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Djilali, S.: Herd behavior in a predator-prey model with spatial diffusion: bifurcation analysis and Turing instability. J. Appl. Math. Comput. 58(1–2), 125–149 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Djilali, S.: Impact of prey herd shape on the predator-prey interaction. Chaos Solitons Fractals 120, 139–148 (2019)

    Article  MathSciNet  Google Scholar 

  9. Djilali, S.: Effect of herd shape in a diffusive predator-prey model with time delay. J. Appl. Anal. Comput. 9(2), 638–654 (2019)

    MathSciNet  Google Scholar 

  10. Djilali, S., Touaoula, T.M., Miri, S.E.H.: A heroin epidemic model: very general non linear incidence, treat-age, and global stability. Acta Appl. Math. 152(1), 171–194 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, S.: Bifurcation and spatio-temporal patterns in a diffusive predator-prey system. Nonlinear Anal., Real World Appl. 42, 448–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holling, C.S.: The functional response of invertebrate predator to prey density. Mem. Entomol. Soc. Can. 45, 3–60 (1965)

    Google Scholar 

  13. Jia, Y., Luo, B., Wu, J., Xu, H.K.: Analysis on the existence of a steady-states for an ecological-mathematical model with predator-prey-dependent functional response. Comput. Math. Appl. 76(7), 1767–1778 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, S., Wu, J., Dong, Y.: Effects of a degeneracy in a diffusive predator-prey model with Holling II functional response. Nonlinear Anal., Real World Appl. 43, 78–95 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, B., Wu, R., Chen, L.: Patterns induced by supper cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting. Math. Biosci. 298, 71–79 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, F., Yang, R., Tang, L.: Hopf bifurcation in a diffusive predator-prey model with competitive interference. Chaos Solitons Fractals 120, 250–258 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross diffusion. J. Differ. Equ. 131, 79–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meng, Q., Yang, L.: Steady state in a cross-diffusion predator-prey model with the Beddington-DeAngelis functional response. Nonlinear Anal., Real World Appl. 45, 401–413 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oeda, K., Kuto, K.: Positive steady states for a prey-predator model with population flux by attractive transition. Nonlinear Anal., Real World Appl. 44, 589–615 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, R., Yi, F.q., Zhao, X.q.: Spatiotemporal patterns in a reaction-diffusion model with Degn-Harrison reaction scheme. J. Differ. Equ. 254, 2465–2498 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, Y., Jiang, H., Liu, Q-X., Yuan, Y.: Spatiotemporal dynamics of a diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, X., Yuan, R., Wang, L.: Bifurcations in a diffusive predator-prey model with Beddington-DeAngelis functional response and nonselective harvesting. J. Nonlinear Sci. 29(1), 287–318 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, X., Song, Y.: Cross-diffusion induced spatiotemporal patterns in a predator-prey model with herd behavior. Nonlinear Anal., Real World Appl. 24, 36–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tang, X., Song, Y.: Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality. Chaos Solitons Fractals 81, 303–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang, X., Stability, Y.S.: Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior. Appl. Math. Comput. 251(1), 375–391 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Tang, X., Song, Y., Zhang, T.: Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion. Nonlinear Dyn. 86(1), 73–89 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tripathi, J.P., Abbas, S., Sun, G.Q., Jana, D., Wang, C.H.: Interaction between prey and mutually interfering predator in prey reserve habitat: pattern formation and the Turing-Hopf bifurcation. J. Franklin Inst. 355(15), 7466–7489 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Volpert, R.K.Upadhyay.V., Thakur, N.K.: Propagation of Turing patterns in a plankton model. J. Biol. Syst. 6(2), 524–538 (2012)

    MathSciNet  Google Scholar 

  29. Wang, Y.peter.H.Pang.M.: Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion. Proc. Lond. Math. Soc. 88(3), 135–157 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Wang, X., Lutscher, F.: Turing patterns in predator-prey model with seasonality. J. Math. Biol. 78(3), 711–737 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, C., Qi, S.: Spatial dynamics of a predator-prey system with cross diffusion. Chaos Solitons Fractals 107, 55–60 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yang, W.: Effect of cross-diffusion on the stationary problem of a predator-prey system with protection zone. Comput. Math. Appl. 76(9), 2262–2271 (2018)

    Article  MathSciNet  Google Scholar 

  33. Yang, R., Zhang, C.: Dynamics in a diffusive predator-prey system with a constant prey refuge and delay. Nonlinear Anal., Real World Appl. 31, 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, R., Zhang, C., Zhang, Y.: A delayed diffusive predator-prey system with Michaelis-Menten type predator harvesting. Int. J. Bifurc. Chaos 28(08), 1850099 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yao, S-W., Ma, Z-P., Yue, J-L.: Bistability and Turing patterns induced by cross fraction diffusion in a predator-prey model. Physica A 509, 982–988 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhang, T., Liu, X., Meng, X., Zhang, T.: Spatio-temporal dynamics near steady state of a planktonic system. Comput. Math. Appl. 75(12), 4490–4504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Rong, X., Zhang, J.: A diffusive predator-prey system with prey refuge and predator cannibalism. Math. Biosci. Eng. 16(3), 1445–1470 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Djilali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djilali, S., Bentout, S. Spatiotemporal Patterns in a Diffusive Predator-Prey Model with Prey Social Behavior. Acta Appl Math 169, 125–143 (2020). https://doi.org/10.1007/s10440-019-00291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00291-z

Keywords

Navigation