Skip to main content
Log in

Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider applications of a new function, introduced by Kudryashov (Optik, 206:163550, 2020), to obtain solitary wave solutions of nonlinear PDEs arising in the domain of plasma physics, through their traveling wave reductions. The Kudryashov function, R, has several features which significantly assist symbolic computation specially in case of highly dispersive nonlinear equations. The method provides a simple, effective and straightforward algorithm for obtaining solitary wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. D.J. Korteweg, G. de Vies, On the change of form of long waves advancing in a rectangular canal, and on a new type of long ststionary waves. Phil. Mag. 39(5), 43 (1895)

    Google Scholar 

  2. Clifford S. Gardner, John M. Greene, Martin D. Kruskal, Robert M. Miura, Method for solving the korteweg-devries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  MATH  Google Scholar 

  3. H. Schamel, Stationary solitary, snoidal and sinusoidal ion acoustic. Plasma Phys. 14(10), 905 (1972)

    Article  ADS  Google Scholar 

  4. J. Dan, S. Sain, S. Garai, A. Ghose-Choudhury, Application of the kudryashov function for finding solitary wave solutions of nls type differential equations. Optik 224, 165519 (2020a)

    Article  ADS  Google Scholar 

  5. H. Schamel, A modified korteweg-de vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9(3), 377 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  6. Z. Horii, Formulation of the korteweg-de vries and the burgers equations expressing mass transports from the generalized kawasaki-ohta equation. Phys. Lett. A 306(1), 45 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. S. Garai, A. Ghose-Choudhury, J. Dan, On the solution of certain higher-order local and nonlocal nonlinear equations in optical fibers using kudryashov’s approach. Optik 222, 165312 (2020)

    Article  ADS  Google Scholar 

  8. D. Jayita, S. Sharmistha, A. Ghose-Choudhury, G. Sudip, Solitary wave solutions of nonlinear pdes using kudryashov’s r function method. J. Mod. Opt. 67(19), 1499–1507 (2020b)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.A. El-Tantawy, Nonlinear dynamics of soliton collisions in electronegative plasmas: The phase shifts of the planar kdv- and mkdv-soliton collisions. Chaos Solitons Fract. 93, 162 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Demiray, Analytical solution for nonplanar waves in a plasma with q-nonextensive nonthermal velocity distribution: Weighted residual method. Chaos Solitons Fract. 130, 109448 (2020)

    Article  MathSciNet  Google Scholar 

  11. S. Garai, M.S. Janaki, N. Chakrabarti, Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity. Astrophys. Space Sci. 361, 294 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Hussain, S. Mahmood, Magnetosonic solitons in dense astrophysical plasmas with exchange-correlation potential effects. Chaos Solitons Fract. 106, 266 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. L.-P. Zhang, J.-K. Xue, Effects of the dust charge variation and non-thermal ions on multi-dimensional dust acoustic solitary structures in magnetized dusty plasmas. Chaos Solitons Fract. 23(2), 543 (2005)

    Article  ADS  MATH  Google Scholar 

  14. M.Y. Khan, J. Iqbal, Energy of nonlinear electron acoustic solitons in electron positron ion plasma. Chaos Solitons Fract. 107, 156 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. V. Kumar, A. Patel, Soliton solutions and modulation instability analysis of the coupled zakharov. 134, 170 (2019)

    Google Scholar 

  16. H. Demiray, A. Abdikian, Modulational instability of acoustic waves in a dusty plasma with nonthermal electrons and trapped ions. Chaos Solitons Fract. 121, 50 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Z.-Z. Lan, B.-L. Guo, Nonlinear waves behaviors for a coupled generalized nonlinear schrödinger-boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771 (2020)

    Article  Google Scholar 

  18. N.A. Kudryashov, Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons Fract. 140, 110202 (2020a)

    Article  MathSciNet  Google Scholar 

  19. A. Gkogkou, Prinari B, Soliton interactions in certain square matrix nonlinear schrödinger systems. Eur. Phys. J. Plus 135, 609 (2020)

    Article  Google Scholar 

  20. N.A. Kudryashov, Optical solitons of mathematical model with arbitrary refractive index. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165391

    Article  Google Scholar 

  21. S.A.R. Horsley, The kdv hierarchy in optics. J. Opt. 18, 085104 (2016)

    Article  ADS  Google Scholar 

  22. X.J. Yang, A new integral transform operator for solving the heat-diffusion problem. J. Opt. 64, 193 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Anjan Biswas, Swapan Konar, Introduction to Non-Kerr Law Optical Solitons (Chapman and Hall/CRC, Boca Raton, 2007)

    MATH  Google Scholar 

  24. M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou, A.H. Kara, D. Milovic, F.B. Majid, A. Biswas, M. Belic, Optical solitons with complex ginzburg-landau equation. Nonlinear Dyn. 85, 1979 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Zafar, M. Raheel, K.K. Ali, W. Razzaq, On optical soliton solutions of new hamiltonian amplitude equation via jacobi elliptic functions. Eur. Phys. J. Plus 135, 674 (2020)

    Article  Google Scholar 

  26. A.H. Khater, D.K. Callebaut, A.R. Seadawy, General soliton solutions of an n-dimensional complex ginzburg-landau equation. Phys. Scr. 62, 353 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Lu, A.R. Seadawy, M. Iqbal, Mathematical methods via construction of traveling and solitary wave solutions of three coupled system of nonlinear partial differential equations and their applications. Results Phys. 11, 1161 (2018)

    Article  ADS  Google Scholar 

  28. R. Aly, Seadawy, Three-dimensional weakly nonlinear shallow water waves regime and its traveling wave solutions. Int. J. of Comput. Methods 15(3), 1850017 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.T. Ali, M.M.A. Khater, R.A.M. Attia, A.-H. Abdel-Aty, D. Lu, Abundant numerical and analytical solutions of the generalized formula of hirota-satsuma coupled kdv system. Chaos Solitons Fract. 131, 109473 (2020)

    Article  MathSciNet  Google Scholar 

  30. M.J. Ablowitz, P.A. Clarkson, Solitons Nonlinear Evolution Equations and Inverse Scattering. (Academic Press, Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  31. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  32. Meng Li, Maohua Li, Jingsong He, Degenerate solutions for the spatial discrete hirota equation. Nonlinear Dyn. 102, 1825 (2020)

    Article  Google Scholar 

  33. C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  34. C. Gu, A. Hu, Z. Zhou, Darboux Transformations in Integrable Systems, Mathematical Physics Studies, vol. 26 (Springer, Berlin, 2005)

    Book  Google Scholar 

  35. M. Wang, X. Li, J. Zhang, The \((g^{^{\prime }}/g)\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. A. EL-Wakil, M. A. Madkour, M. A. Abdou, Application of expfunction method for nonlinear evolution equations with variable coefficients. Phys. Lett. A 369, 62–69 (2007)

  37. E.G. Fan, Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Biswas, M. Mirzazadeh, M. Savescu, D. Milovic, K.R. Khan, M.F. Mahmood, M. Belic, Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61(19), 1550–1555 (2014)

    Article  ADS  Google Scholar 

  39. M. Eslami, M. Mirzazadeh, Anjan Biswas, Soliton solutions of the resonant nonlinear schrödinger’s equation in optical fibers with time-dependent coefficients by simplest equation approach. J. Mod. Opt. 60(19), 1627–1636 (2013)

    Article  ADS  Google Scholar 

  40. A.B. Anjan Biswas, Aceves, Dynamics of solitons in optical fibres. J. Mod. Opt. 48(7), 1135–1150 (1999)

    Article  Google Scholar 

  41. M. Kaplan, A. Bekir, A. Akbulut, A generalized kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 85, 2843 (2016)

    Article  MathSciNet  Google Scholar 

  42. A.A. Gaber, A.F. Aljohani, A. Ebaid, J.T. Machado, The generalized kudryashov method for nonlinear space-time fractional partial differential equations of burgers type. Nonlinear Dyn. 95, 361 (2019)

    Article  MATH  Google Scholar 

  43. B.H. Malwe, G. Betchewe, S.Y. Doka, T.C. Kofane, Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized riccati equation mapping method. Nonlinear Dyn. 84, 171 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. H.W.A. Riaz, Multicomponent nonlinear schrödinger equation in \(2+1\) dimensions, its darboux transformation and soliton solutions. Eur. Phys. J. Plus 134, 222 (2019)

    Article  Google Scholar 

  45. N.A. Kudryashov, Exact soliton solutions of the generalized evolution equations of wave dynamics. J. Appl. Math. Mech 52, 361–365 (1988)

    Article  MathSciNet  Google Scholar 

  46. N.A. Kudryashov, Singular manifold equations and exact solutions for some nonlinear partial differential equations. Phys. Letts A 182, 356–362 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  47. N.A. Kudryashov, On one method for finding exact solutions of nonlinear differential equations. Commu. Nonlinear Sci. and Numer. Simul. 17, 2248–2253 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A. Nikolay, Kudryashov, Logistic function as solution of many nonlinear differential equations. Appl. Math. Model. 39, 5733–5742 (2015). https://doi.org/10.1016/j.aml.2019.106155

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Nikolay, Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations. Opt. Int. J. Light Electr. Opt. 206, 163550 (2020c)

    Article  Google Scholar 

  50. N.C. Adhikary, M.K. Deka, A.N. Dev, J. Sarmah, Modified korteweg-de vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal ion and trapped electron. Phys. Plasmas 21, 083703 (2014)

    Article  ADS  Google Scholar 

  51. A.H. Khater, M.M. Hassan, R.S. Temsah, Exact solutions with jacobi elliptic functions of two nonlinear models for ion-acoustic plasma waves. J. Phys. Soc. Jpn. 74(5), 1431 (2005)

    Article  ADS  MATH  Google Scholar 

  52. G.C. Das, S.G. Tagare, J. Sarma, Quasipotential analysis for ion-acoustic solitary waves and double layers in plasmas. Planet. Space Sci. 46, 417 (1998)

    Article  ADS  Google Scholar 

  53. S.G. Tagare, A. Chakrabarti, Solution of a generalized korteweg-de vries equation. Phys. Fluids 17, 1331 (1974)

    Article  ADS  Google Scholar 

  54. W. Gao, H.F. Ismael, A.M. Husien, H. Bulut, H.M. Baskonus, Optical soliton solutions of the cubic-quartic nonlinear schrödinger and resonant nonlinear schrödinger equation with the parabolic law. Appl. Sci. 10, 219 (2020)

    Article  Google Scholar 

  55. D. Baldwin, Ü. Göktas, W. Heremana, L. Hong, R.S. Martino, J.C. Millere, Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear pdes. J. Symbol. Comput. 37, 669 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. N.A. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 14(9–10), 3507–3529 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A.H. Khater, M.M. Hassan, R.S. Temsah, Cnoidal wave solutions for a class of fifth-order kdv equations. Math. Comput. Simul. 70, 221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Professors Nikolay Kudryashov and Anjan Biswas for drawing our attention to this new approach and for the encouragement. We also thank the anonymous referee for his/her constructive comments toward the betterment of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding author

Correspondence to Sudip Garai.

Ethics declarations

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sain, S., Ghose-Choudhury, A. & Garai, S. Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function. Eur. Phys. J. Plus 136, 226 (2021). https://doi.org/10.1140/epjp/s13360-021-01217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01217-1

Navigation