Skip to main content
Log in

Optical solitons with complex Ginzburg–Landau equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper revisits in a systematic way the complex Ginzburg–Landau equation with Kerr and power law nonlinearities. Several integration techniques are applied to retrieve various soliton solutions to the model for both forms of nonlinearity. Bright, dark as well as singular soliton solutions are obtained. Several other solutions such as periodic singular solutions and plane waves emerge as a by-product of integration algorithms. Constraint conditions hold all of these solutions in place. The numerical simulations for bright soliton solutions are given for Kerr and power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdou, M.A., Elhanbaly, A.: Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method. Commun. Nonlinear Sci. Numer. Simul. 12, 1229–1241 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhmediev, N.N., Soto-Crespo, J.M., Town, A.: Pulsating solitons, chaotic dynamics, period doubling and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001)

    Article  Google Scholar 

  3. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Milović, D., Moraru, L., Savescu, M., Biswas, A.: Optical solitons with polynomial and triple power law nonlinearities and spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 15(3), 235–240 (2014)

    MathSciNet  Google Scholar 

  4. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi’s elliptic function method. Commun. Nonlinear Sci. Numer. Simul. 18, 915–925 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biswas, A.: Temporal 1-soliton solution of the complex Ginzburg–Landau equation with power law nonlinearity. Prog. Electromagn. Res. 96, 1–7 (2009)

    Article  Google Scholar 

  6. Biswas, A., Milović, D.: Traveling wave solutions of the nonlinear Schrödinger’s equation in non-Kerr law media. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1993–1998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biswas, A., Mirzazadeh, M., Eslami, M., Milović, D., Belić, M.: Solitons in optical metamaterials by functional variable method and first integral approach. Frequenz 68(11–12), 525–530 (2014)

    Google Scholar 

  8. Biswas, A., Khan, K., Mahmood, M.F., Belić, M.: Bright and dark solitons in optical metamaterials. Optik 125(13), 3299–3302 (2014)

    Article  Google Scholar 

  9. Biswas, A., Mirzazadeh, M., Savescu, M., Milović, D., Khan, K.R., Mahmood, M.F., Belić, M.: Singular solitons in optical metamaterials by ansatz method and simplest equation approach. J. Mod. Opt. 61(19), 1550–1555 (2014)

    Article  Google Scholar 

  10. Chen, H.T., Zhang, H.Q.: New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation. Chaos Solitons Fractals 20, 765–769 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demiray, S.T., Pandir, Y., Bulut, H.: Generalized Kudryashov method for time-fractional differential equations. Abstr. Appl. Anal. (2014). doi:10.1155/2014/901540

  12. Ebadi, G., Biswas, A.: The \(G^{\prime }/G\) method and topological soliton solution of the \(K(m, n)\) equation. Commun. Nonlinear Sci. Numer. Simul. 16, 2377–2382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ebaid, A., Aly, E.H.: Exact solutions for the transformed reduced Ostrovsky equation via the \(F\)-expansion method in terms of Weierstrass- elliptic and Jacobian-elliptic functions. Wave Motion 49(2), 296–308 (2012)

    Article  MathSciNet  Google Scholar 

  14. Filiz, A., Ekici, M., Sonmezoglu, A.: \(F\)-expansion method and new exact solutions of the Schrödinger–KdV equation. Sci. World J. 2014, Article ID 534063 (2014)

  15. Filiz, A., Sonmezoglu, A., Ekici, M., Duran, D.: A new approach for soliton solutions of RLW equation and (1 + 2)-dimensional nonlinear Schrödinger’s equation. Math. Rep. 17(67), 43–56 (2015)

    MathSciNet  Google Scholar 

  16. Guo, R., Zhao, H.-H.: Effects of loss or gain terms on soliton and breather solutions in a couple fiber system. Nonlinear Dyn. 84(2), 933–941 (2016)

    Article  MathSciNet  Google Scholar 

  17. Guo, S., Zhou, Y.: The extended \(G^{\prime }/G-\)expansion method and its applications to Whitham–Broer–Kaup-like equations and coupled Hirota–Satsuma KdV equations. Appl. Math. Comput. 215, 3214–3221 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Gurefe, Y., Misirli, E., Sonmezoglu, A., Ekici, M.: Extended trial equation method to generalized nonlinear partial differential equations. Appl. Math. Comput. 219, 5253–5260 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Huiqun, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12, 627–635 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q., Zhu, J.M.: Exact Jacobian elliptic function solutions and hyperbolic function solutions for Sawada–Kotere equation with variable coefficient. Phys. Lett. A 352, 233–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Nonlinear Mech. 31, 329–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mirzazadeh, M., Eslami, M.: Exact solutions of the Kudryashov–Sinelshchikov equation and nonlinear telegraph equation via the first integral method. Nonlinear Anal. Model. Control 17(4), 481–488 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, Mohammad F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mirzazadeh, M., Eslami, M.: Exact solutions for nonlinear variants of Kadomtsev–Petviashvili \((n, n)\) equation using functional variable method. Pramana 81(6), 911–924 (2013)

    Article  Google Scholar 

  26. Moores, J.D.: On the Ginzburg–Landau laser mode-locking model with fifth order saturable absorber term. Opt. Commun. 96(1–3), 65–70 (1993)

    Article  Google Scholar 

  27. Pandir, Y., Gurefe, Y., Kadak, U., Misirli, E.: Classification of exact solutions for some nonlinear partial differential equations with generalized evolution. Abstr. Appl. Anal. Article ID 478531 (2012)

  28. Sonmezoglu, A.: Exact solutions for some fractional differential equations. Adv. Math. Phys. 2015, Article ID 567842 (2015)

  29. Shwetanshumala, S.: Temporal solitons of modified complex Ginzburg Landau equation. Prog. Electromagn. Res. Lett. 3, 17–24 (2008)

    Article  Google Scholar 

  30. Wazwaz, A.M.: The sine-cosine method for obtaining solutions with compact and noncompact structures. Appl. Math. Comput. 159(2), 559–576 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, Z.: An improved algebra method and its applications in nonlinear wave equations. MM Res. Prepr. 22, 264–274 (2003)

    Google Scholar 

  33. Zayed, E.M.E., EL-Malky, M.A.S.: The extended \((G^{\prime }/G)-\)expansion method and its applications for solving the (3 + 1)-dimensional nonlinear evolution equations in mathematical physics. Glob. J. Sci. Front. Res. 11(1), 69–80 (2011)

  34. Zhang, D.: Doubly periodic solutions of the modified Kawahara equation. Chaos Solitons Fractals 25, 1155–1160 (2005)

  35. Zhao, X., Zhi, H., Zhang, H.: “Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system. Chaos Solitons Fractals 28, 112–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, Q., Yao, D., Chen, F.: Analytical study of optical solitons in media with Kerr and parabolic law nonlinearities. J. Mod. Opt. 60(19), 1652–1657 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zhou, Q., Yao, D., Chen, F., Li, W.: Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60(10), 854–859 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zhou, Q.: Analytical solutions and modulational instability analysis to the perturbed nonlinear Schrödinger equation. J. Mod. Opt. 61(6), 500–503 (2014)

    Article  Google Scholar 

  39. Zhou, Q.: Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect. Optik 125(13), 3142–3144 (2014)

    Article  Google Scholar 

  40. Zhou, Q., Zhu, Q., Liu, Y., Biswas, A., Bhrawy, A.H., Khan, K.R., Mahmood, M.F., Belić, M.R.: Solitons in optical metamaterials with parabolic law nonlinearity and spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16(11–12), 1221–1225 (2014)

    Google Scholar 

Download references

Acknowledgments

This research was funded by Qatar National Research Fund (QNRF) under the Grant Number NPRP 6-021-1-005. The ninth and tenth authors (AB&MB) thankfully acknowledge this support from QNRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Ethics declarations

Conflict of interest

The authors also declare there is no conflict of interest.

Appendices

Appendix 1

Relations between values of (P, Q, R) and the corresponding F(s) in Eq. (185), where A, B and C are arbitrary constants and \(m_1=\sqrt{1-m^2}\).

Case

P

Q

R

F(s)

1

\(m^2\)

\(-(1+m^2)\)

1

\({{\mathrm{sn}}}s\)

2

\(m^2\)

\(-(1+m^2)\)

1

\({{\mathrm{cd}}}s={{\mathrm{cn}}}s/ {{\mathrm{dn}}}s\)

3

\(-m^2\)

\(2m^2-1\)

\(1-m^2\)

\({{\mathrm{cn}}}s\)

4

\(-1\)

\(2-m^2\)

\(m^2-1\)

\({{\mathrm{dn}}}s\)

5

1

\(-(1+m^2)\)

\(m^2\)

\({{\mathrm{ns}}}s=({{\mathrm{sn}}}s)^{-1}\)

6

1

\(-(1+m^2)\)

\(m^2\)

\({{\mathrm{dc}}}s={{\mathrm{dn}}}s / {{\mathrm{cn}}}s\)

7

\(1-m^2\)

\(2m^2-1\)

\(-m^2\)

\({{\mathrm{nc}}}s=({{\mathrm{cn}}}s)^{-1}\)

8

\(m^2-1\)

\(2-m^2\)

\(-1\)

\({{\mathrm{nd}}}s=({{\mathrm{dn}}}s)^{-1}\)

9

\(1-m^2\)

\(2-m^2\)

1

\(\text {sc} \ s={{\mathrm{sn}}}s/ {{\mathrm{cn}}}s\)

10

\(-m^2(1-m^2)\)

\(2m^2-1\)

1

\({{\mathrm{sd}}}s={{\mathrm{sn}}}s/ {{\mathrm{dn}}}s\)

11

1

\(2-m^2\)

\(1-m^2\)

\({{\mathrm{cs}}}s={{\mathrm{cn}}}s/ {{\mathrm{sn}}}s\)

12

1

\(2m^2-1\)

\(-m^2(1-m^2)\)

\({{\mathrm{ds}}}s={{\mathrm{dn}}}s/{{\mathrm{sn}}}s\)

13

1 / 4

\((1-2m^2)/2\)

1 / 4

\({{\mathrm{ns}}}s\pm {{\mathrm{cs}}}s\)

14

\((1-m^2)/4\)

\((1+m^2)/2\)

\((1-m^2)/4\)

\({{\mathrm{nc}}}s\pm s\)

15

1 / 4

\((m^2-2)/2\)

\(m^2/4\)

\({{\mathrm{ns}}}s\pm {{\mathrm{ds}}}s\)

16

\(m^2/4\)

\((m^2-2)/2\)

\(m^2/4\)

\({{\mathrm{sn}}}s\pm i{{\mathrm{cn}}}s\)

17

\(m^2/4\)

\((m^2-2)/2\)

\(m^2/4\)

\(\sqrt{1-m^2}{{\mathrm{sd}}}s\pm {{\mathrm{cd}}}s\)

18

1 / 4

\((1-m^2)/2\)

1 / 4

\(m{{\mathrm{cd}}}s\pm i\sqrt{1-m^2}{{\mathrm{nd}}}s\)

Case

P

Q

R

F(s)

19

1 / 4

\((1-2m^2)/2\)

1 / 4

\(m{{\mathrm{sn}}}s\pm i{{\mathrm{dn}}}s\)

20

1 / 4

\((1-m^2)/2\)

1 / 4

\(\sqrt{1-m^2} \text {sc} \ s\pm {{\mathrm{dc}}}s\)

21

\((m^2-1)/4\)

\((m^2+1)/2\)

\((m^2-1)/4\)

\(m{{\mathrm{sd}}}s\pm {{\mathrm{nd}}}s\)

22

\(m^2/4\)

\((m^2-2)/2\)

1 / 4

\(\frac{{{\mathrm{sn}}}s}{1\pm {{\mathrm{dn}}}s}\)

23

\(-1/4\)

\((m^2+1)/2\)

\((1-m^2)^2/4\)

\(m{{\mathrm{cn}}}s\pm {{\mathrm{dn}}}s\)

24

\((1-m^2)^2/4\)

\((m^2+1)/2\)

1 / 4

\( {{\mathrm{ds}}}s\pm {{\mathrm{cs}}}s\)

25

\(\frac{m^4(1-m^2)}{2(2-m^2)}\)

\(\frac{2(1-m^2)}{m^2-2}\)

\(\frac{1-m^2}{2(2-m^2)}\)

\({{\mathrm{dc}}}s\pm \sqrt{1-m^2} {{\mathrm{nc}}}s\)

26

\(P>0\)

\(Q<0\)

\(\frac{m^2Q^2}{(1+m^2)^2 P}\)

\(\sqrt{\frac{-m^2Q}{(1+m^2) P}} {{\mathrm{sn}}}\left( \sqrt{\frac{-Q}{1+m^2}}s\right) \)

27

\(P<0\)

\(Q>0\)

\(\frac{(1-m^2)Q^2}{(m^2-2)^2 P}\)

\( \sqrt{\frac{-Q}{(2-m^2) P}} {{\mathrm{dn}}}\left( \sqrt{\frac{Q}{2-m^2}}s\right) \)

28

\(P<0\)

\(Q>0\)

\(\frac{m^2(m^2-1)Q^2}{(2m^2-1)^2 P}\)

\( \sqrt{-\frac{m^2Q}{(2m^2-1) P}} {{\mathrm{cn}}}\left( \sqrt{\frac{Q}{2m^2-1}}s\right) \)

29

1

\(2-4m^2\)

1

\( \frac{{{\mathrm{sn}}}s {{\mathrm{dn}}}s}{{{\mathrm{cn}}}s}\)

30

\(m^4\)

2

1

\( \frac{{{\mathrm{sn}}}s {{\mathrm{cn}}}s}{{{\mathrm{dn}}}s}\)

31

1

\(m^2+2\)

\(1-2m^2+m^4\)

\( \frac{{{\mathrm{dn}}}s {{\mathrm{cn}}}s}{{{\mathrm{sn}}}s}\)

32

\(\frac{A^2(m-1)^2}{4}\)

\(\frac{m^2+1}{2}+3m\)

\(\frac{(m-1)^2}{4A^2}\)

\( \frac{{{\mathrm{dn}}}s {{\mathrm{cn}}}s}{A(1+{{\mathrm{sn}}}s)(1+m{{\mathrm{sn}}}s)}\)

33

\(\frac{A^2(m+1)^2}{4}\)

\(\frac{m^2+1}{2}-3m\)

\(\frac{(m+1)^2}{4A^2}\)

\( \frac{{{\mathrm{dn}}}s {{\mathrm{cn}}}s}{A(1+{{\mathrm{sn}}}s)(1-m{{\mathrm{sn}}}s)}\)

34

\(-\frac{4}{m}\)

\(6m-m^2-1\)

\(-2m^3+m^4+m^2\)

\( \frac{m{{\mathrm{cn}}}s {{\mathrm{dn}}}s}{m{{\mathrm{sn}}}^2 s+1}\)

35

\(\frac{4}{m}\)

\(-6m-m^2-1\)

\(2m^3+m^4+m^2\)

\( \frac{m{{\mathrm{cn}}}s {{\mathrm{dn}}}s}{m{{\mathrm{sn}}}^2 s-1}\)

36

1 / 4

\(\frac{1-2m^2}{2}\)

1 / 4

\( \frac{{{\mathrm{sn}}}s}{1\pm {{\mathrm{cn}}}s}\)

37

\(\frac{1-m^2}{4}\)

\(\frac{1+m^2}{2}\)

\(\frac{1-m^2}{4}\)

\( \frac{{{\mathrm{cn}}}s}{1\pm {{\mathrm{sn}}}s}\)

38

\(4m_1\)

\(2+6m_1-m^2\)

\(2+2m_1-m^2\)

\( \frac{m^2{{\mathrm{sn}}}s{{\mathrm{cn}}}s}{m_1 - {{\mathrm{dn}}}^2 s}\)

39

\(-4m_1\)

\(2-6m_1-m^2\)

\(2-2m_1-m^2\)

\( -\frac{m^2{{\mathrm{sn}}}s {{\mathrm{cn}}}s}{m_1 + {{\mathrm{dn}}}^2 s}\)

40

\(\frac{2-m^2-2m_1}{4}\)

\(\frac{m^2}{2}-1-3m_1\)

\(\frac{2-m^2-2m_1}{4}\)

\( \frac{m^2{{\mathrm{sn}}}s {{\mathrm{cn}}}s}{ {{\mathrm{sn}}}^2 s+(1+m_1) {{\mathrm{dn}}}s-1-m_1}\)

41

\(\frac{2-m^2+2m_1}{4}\)

\(\frac{m^2}{2}-1+3m_1\)

\(\frac{2-m^2+2m_1}{4}\)

\( \frac{m^2{{\mathrm{sn}}}s {{\mathrm{cn}}}s}{ {{\mathrm{sn}}}^2 s+(-1+m_1) {{\mathrm{dn}}}s-1+m_1}\)

42

\(\frac{C^2m^4-(B^2+C^2)m^2+B^2}{4}\)

\(\frac{m^2+1}{2}\)

\(\frac{m^2-1}{4(C^2m^2-B^2)}\)

\( \frac{\sqrt{\frac{(B^2-C^2)}{(B^2-C^2m^2)}}+{{\mathrm{sn}}}s}{B{{\mathrm{cn}}}s+ C{{\mathrm{dn}}}s} \)

43

\(\frac{B^2+C^2m^2}{4}\)

\(\frac{1}{2}-m^2\)

\(\frac{1}{4(C^2m^2+B^2)}\)

\( \frac{\sqrt{\frac{(C^2m^2+B^2-C^2)}{(B^2+C^2m^2)}}+{{\mathrm{cn}}}s}{B{{\mathrm{sn}}}s+ C{{\mathrm{dn}}}s} \)

44

\(\frac{B^2+C^2}{4}\)

\(\frac{m^2}{2}-1\)

\(\frac{m^4}{4(C^2+B^2)}\)

\( \frac{\sqrt{\frac{(B^2+C^2-C^2m^2)}{(B^2+C^2)}}+{{\mathrm{dn}}}s}{B{{\mathrm{sn}}}s+ C{{\mathrm{cn}}}s} \)

45

\(-(m^2+2m+1)B^2\)

\(2m^2+2\)

\(\frac{2m-m^2-1}{B^2}\)

\(\frac{m{{\mathrm{sn}}}^2 s-1}{B(m{{\mathrm{sn}}}^2 s+1)}\)

46

\(-(m^2-2m+1)B^2\)

\(2m^2+2\)

\(-\frac{2m+m^2+1}{B^2}\)

\(\frac{m{{\mathrm{sn}}}^2 s+1}{B(m{{\mathrm{sn}}}^2 s-1)}\)

Appendix 2

Weierstrass elliptic function solutions for Eq. (185), where \(D=\frac{1}{2}\left( -5Q\pm \sqrt{9Q^2-36{\textit{PR}}}\right) \) and \(\wp '(s;g_2,g_3)=\frac{d\wp (s;g_2,g_3)}{ds}.\)

Case

\(g_2\)

\(g_3\)

F(s)

 

47

\(\frac{4}{3}(Q^2-3{\textit{PR}})\)

\(\frac{4Q}{27}(-2Q^2+9{\textit{PR}})\)

\( \sqrt{\frac{1}{P}(\wp (s;g_2,g_3) -\frac{1}{3}Q)}\)

 

48

\(\frac{4}{3}(Q^2-3{\textit{PR}})\)

\(\frac{4Q}{27}(-2Q^2+9{\textit{PR}})\)

\( \sqrt{\frac{3R}{3 \wp (s;g_2,g_3) -Q}}\)

 

49

\(-\frac{5QD+4Q^2+33{\textit{PQR}}}{12}\)

\(\frac{21Q^2D-63{\textit{PR}}D+20Q^3-27{\textit{PQR}}}{216}\)

\( \frac{\sqrt{12R \wp (s;g_2,g_3) +2R(2Q+D)}}{12 \wp (s;g_2,g_3)+D}\)

 

50

\(\frac{1}{12}Q^2+{\textit{PR}}\)

\(\frac{1}{216}Q(36{\textit{PR}}-Q^2)\)

\( \frac{\sqrt{R}[6 \wp (s;g_2,g_3)+Q]}{3 \wp '(s;g_2,g_3)}\)

 

51

\(\frac{1}{12}Q^2+{\textit{PR}}\)

\(\frac{1}{216}Q(36{\textit{PR}}-Q^2)\)

\( \frac{3 \wp '(s;g_2,g_3)}{\sqrt{P}[6 \wp (s;g_2,g_3)+Q]}\)

 

52

\(\frac{2Q^2}{9}\)

\(\frac{Q^3}{54}\)

\(\frac{Q\sqrt{-15Q/2P}\wp (s;g_2,g_3)}{3\wp (s;g_2,g_3)+Q},\)

\(R=\frac{5Q^2}{36P}\)

Appendix 3

The Jacobian elliptic functions degenerate into hyperbolic functions when \(m\rightarrow 1^-\) as follows:

$$\begin{aligned} \begin{array}{lll} {{\mathrm{sn}}}s\rightarrow \tanh s,&{}{{\mathrm{cn}}}s\rightarrow \mathrm{sech}s,&{} {{\mathrm{dn}}}s \rightarrow \mathrm{sech}s, \\ \text {sc} \ s \rightarrow \sinh s,&{} {{\mathrm{sd}}}s\rightarrow \sinh s,&{}{{\mathrm{cd}}}s\rightarrow 1,\\ {{\mathrm{ns}}}s\rightarrow \coth s,&{}{{\mathrm{nc}}}s\rightarrow \cosh s,&{} {{\mathrm{nd}}}s\rightarrow \cosh s, \\ {{\mathrm{cs}}}s\rightarrow \mathrm{csch}s,&{}{{\mathrm{ds}}}s\rightarrow \mathrm{csch}s,&{}{{\mathrm{dc}}}s \rightarrow 1. \end{array} \end{aligned}$$

The Jacobian-elliptic functions degenerate into trigonometric functions when \(m\rightarrow 0^+\) as follows:

$$\begin{aligned} \begin{array}{lll} {{\mathrm{sn}}}s\rightarrow \sin s,&{}{{\mathrm{cn}}}s\rightarrow \cos s,&{}{{\mathrm{dn}}}s\rightarrow 1, \\ \text {sc} \ s\rightarrow \tan s,&{}{{\mathrm{sd}}}s \rightarrow \sin s,&{}{{\mathrm{cd}}}s \rightarrow \cos s,\\ {{\mathrm{ns}}}s\rightarrow \csc s,&{}{{\mathrm{nc}}}s\rightarrow \sec s,&{}{{\mathrm{nd}}}s \rightarrow 1, \\ {{\mathrm{cs}}}s\rightarrow \cot s,&{}{{\mathrm{ds}}}s\rightarrow \csc s,&{} {{\mathrm{dc}}}s \rightarrow \sec s. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzazadeh, M., Ekici, M., Sonmezoglu, A. et al. Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn 85, 1979–2016 (2016). https://doi.org/10.1007/s11071-016-2810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2810-5

Keywords

Navigation