Skip to main content
Log in

Degenerate solutions for the spatial discrete Hirota equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, some degenerate solutions of the spatial discrete Hirota equation are constructed via the degenerate idea of positon solution. Under the zero seed solution, the n-positon is obtained by N-fold degenerate Darboux transformation (DT). The degenerate DT is taking the degenerate limit \(\lambda _{j}\rightarrow \lambda _{1}\) for the eigenvalues \(\lambda _{j}(j=1,2, 3, \ldots , N)\) of N-fold DT and then performing the high-order Taylor expansion near \(\lambda _{1}\). Considering the universal Darboux transformation, breather is obtained from the nonzero seed. Then, a new type of breather solution can be produced by using the same degenerated method and higher-order Taylor expansion for eigenvalues in determinant expression of breather solution. The explicit determinants of breather-positon solution and positon solution are constructed, respectively, and the complicated and significant dynamics of low-order solution are also revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Cao, Y.L., He, J.S., Mihalache, D.: Families of exact solutions of a new extended (2+1)-dimensional Boussinesq equation. Nonlinear Dyn. 91, 2593–2605 (2018)

    Google Scholar 

  3. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirotas method. Nonlinear Dyn. 88, 3017–3021 (2017)

    MathSciNet  Google Scholar 

  4. Guo, L.J., Zhang, Y.S., Xu, S.W., Wu, Z.W., He, J.S.: The higher order rogue wave solutions of the Gerdjikov–Ivanov equation. Phys. Scr. 89, 035501 (2014)

    Google Scholar 

  5. Liu, J.G., He, Y.: Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 92, 1103–1108 (2018)

    Google Scholar 

  6. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    MATH  Google Scholar 

  7. Ercolani, N., Siggia, E.D.: Painlevé property and geometry. Phys. D 34(3), 303–346 (2015)

    MATH  Google Scholar 

  8. Cheng, Q.S., He, J.S.: The prolongation structures and nonlocal symmetries for modified Boussinesq system. Acta Math. Sci. 34(1), 215–227 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Ablowitz, M.J., Ladik, J.F.: A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55, 213–229 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Ablowitz, M.J., Ladik, J.F.: On the solution of a class of nonlinear partial difference equation. Stud. Appl. Math. 57, 1–12 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Hirota, R.: Nonlinear partial difference equation. I. A difference analogue of the Korteweg–de Vries equation. J. Soc. Jpn. 43, 4124–4166 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Hirota, R.: Nonlinear partial difference equation. II. Discrete-time Toda equation. J. Phys. Soc. Jpn. 43, 2074–2078 (1977)

    MathSciNet  MATH  Google Scholar 

  13. Nong, L.J., Zhang, D.J., Shi, Y., Zhang, W.Y.: Parameter extension and the quasi-rational solution of a lattice boussinesq equation. Chin. Phys. Lett. 30(4), 040201 (2013)

    Google Scholar 

  14. Wen, X.Y., Wang, D.S.: Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation. Wave Motion 79, 84–97 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Zhao, H.Q., Guo, F.Y.: Discrete rational and breather solution in the spatial discrete complex modified Korteweg–de Vries equation and continuous counterparts. Chaos 27, 043113 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Zhao, H.Q., Yuan, J.Y., Zhu, Z.N.: Integrable semi-discrete Kundu–Eckhaus eqaution: darboux transformation, breather, rogue wave and continuous limit theory. J. Nonlinear Sci. 28, 43–68 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Date, E., Jimbo, M., Miwa, T.: Method for generating discrete soliton equations, I. J. Phys. Soc. Jpn. 51, 4116–4127 (1982)

    MathSciNet  Google Scholar 

  18. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  19. Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  20. Ablowitz, M.J., Herbst, B.M., Schober, C.M.: Discretizations, integrable systems and computation. J. Phys. A Math. Gen. 34, 10671–10693 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    MathSciNet  Google Scholar 

  22. Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    MathSciNet  Google Scholar 

  23. Matveev, V.B.: Asymptotics of the multipositon-soliton \(\tau \) function of the Korteweg–de Vries equation and the supertransparency. J. Math. Phys. 35, 2955 (1994)

    MathSciNet  MATH  Google Scholar 

  24. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247–258 (2010)

    Google Scholar 

  25. Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg–de Vries equation. Nonlinear Dyn. 89, 2299–2310 (2017)

    MathSciNet  Google Scholar 

  26. Beutler, R.: Positon solutions of the sine-Gordon equation. J. Math. Phys. 1993, 3081–3109 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Stahlofen, A.A.: Positons of the modified Korteweg–de Vries equation. Ann. Phys. 504, 554–569 (1992)

    MathSciNet  Google Scholar 

  28. Maisch, H., Stahlofen, A.A.: Dynamic properties of positons. Phys. Scr. 1995, 228–236 (1995)

    Google Scholar 

  29. Stahlofen, A.A., Matveev, V.B.: Positons for the Toda lattice and related spectral problems. J. Phys. A: Math. Gen. 1995, 1957–1965 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Wu, H.X., Zeng, Y.B., Fan, T.Y.: A new multicomponent CKP Hierarchy and solutions. Commun. Theror. Phys. 49, 529–534 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Hu, H.C., Liu, Y.: New positon, negaton and complexiton solutions for the Hirota–Satsuma coupled KdV system. Phys. Lett. A 372, 5795–5798 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Waves Random Complex 28, 203–214 (2018)

    MathSciNet  Google Scholar 

  33. Liu, S.Z., Zhang, Y.S., He, J.S.: Smooth positons of the second-type derivative nonlinear Schrö dinger equation. Commun. Theor. Phys. 71, 357–361 (2019)

    Google Scholar 

  34. Song, W.J., Xu, S.W., Li, M.H., He, J.S.: Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. 97, 2135–2145 (2019)

    MATH  Google Scholar 

  35. Capasso, F., Sirtori, C., Faist, J., Sivco, D.L., Chu, S.N.G., Cho, A.Y.: Observation of an electronic bound state above a potential well. Nature 358, 565–567 (1992)

    Google Scholar 

  36. Pickering, A., Zhao, H.Q., Zhu, Z.N.: On the continuum limit for a semidiscrete Hirota equation. Proc. R. Soc. A 472, 20160628 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Yang, J., Zhu, Z.N.: Higher-order rogue wave solutions to a spatial discrete Hirota equation. Chin Phys. Lett. 35, 090201 (2018)

    Google Scholar 

  38. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010)

    Google Scholar 

  39. Hammani, K., Kibler, B., Finot, C., Morin, P., Fatome, J., Dudley, J.M., Millot, G.: Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112–114 (2011)

    Google Scholar 

  40. Kibler, B., Fatome, J., Finot, C., Millot, G., Genty, G., Wetzel, B., Akhmediev, N., Dias, F., Dudley, J.M.: Observation of Kuznetsov–Ma soliton dynamics in optical fibre. Sci. Rep. 2, 463 (2012)

    Google Scholar 

  41. Frisquet, B., Kibler, B., Morin, P., Baronio, F., Conforti, M., Wetzel, B.: Optical dark rogue wave. Sci. Rep. 6, 20785 (2016)

    Google Scholar 

  42. Ding, Q.: On the gauge equivalent structure of the discrete nonlinear Schrödinger equation. Phys. Lett. A 266, 146–154 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Discrete nonlocal nonlinear Schrödinger systems: Integrability, inverse scattering and solitons. Nonlinearity 33, 3653–3707 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg–de Vries equation. J. Phys. Soc. Jpn. 51, 2029–2035 (1982)

    MathSciNet  Google Scholar 

  45. Takahashi, M., Konno, K.: N-double pole solution for the modified Korteweg–de Vries equation by the Hirotas method. J. Phys. Soc. Jpn. 58, 3505–3508 (1989)

    MathSciNet  Google Scholar 

  46. Karlsson, M., Kaup, D.J., Malomed, B.A.: Interactions between polarized soliton pulses in optical fibers: exact solutions. Phys. Rev. E 54, 5802–5808 (1996)

    Google Scholar 

  47. Shek, C.M., Grimshaw, R.H.J., Ding, E., Chow, K.W.: Interactions of breathers and solitons of the extended Kortewegde Vries equation. Wave Motion 43, 158–166 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Alejo, M.A.: Focusing mKdV breather solutions with nonvanishing boundary condition by the inverse scattering method. J. Nonlinear Math. Phys. 19, 125009 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Olmedilla, E.: Multiple-pole solutions of the nonlinear Schrödinger equation. Phys. D 25, 330–346 (1987)

    MathSciNet  MATH  Google Scholar 

  50. Wang, L.H., He, J.S., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Guo Lijuan of Nanjing Forestry University for the fruitful suggestions. This work is supported by the NSF of Zhejiang Province under Grant No. LY15A010005, the NSF of Ningbo under Grant No. 2018A610197, the NSF of China under Grant No. 11671219 and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohua Li.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical Statement

Authors declare that they comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, M. & He, J. Degenerate solutions for the spatial discrete Hirota equation. Nonlinear Dyn 102, 1825–1836 (2020). https://doi.org/10.1007/s11071-020-05973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05973-0

Keywords

Navigation