Skip to main content
Log in

Entropy generation in mixed convection flow past a vertical wavy surface

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Irreversibility phenomenon is numerically investigated for mixed convection flow along a uniformly heated vertical wavy surface. Surface texture of the plate does not allow for a self-similar solution due to which the nature of the problem is non-similar. The numerical solution of the governing non-similar equations has been achieved by utilizing the implicit finite difference scheme commonly known as Keller-Box method and the outputs are shown through graphical pictures. The influence of various physical parameters of interest (mixed convection parameter, wavy amplitude, Prandtl number) on entropy generation and Bejan number has been discussed in detail. It is observed that entropy production enhances with an increment in mixed convection parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.M. Sparrow, R. Eichorn, J.L. Gregg, Combined forced and free convection in boundary layer flow. Phys. Fluids 2, 319–328 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.H. Merkin, The effects of buoyancy forces on the boundary layer flow over semi-infinite vertical flat plate in a uniform free stream. J. Fluid Mech. 35, 439–450 (1969)

    Article  ADS  Google Scholar 

  3. J.R. Lloyd, E.M. Sparrow, Combined forced and free convection flow on vertical surfaces. Int. J. Heat Mass Transf. 13, 434–438 (1970)

    Article  Google Scholar 

  4. G. Wilks, Combined forced and free convective flow on vertical surfaces. Int. J. Heat Mass Transf. 16, 1958–1964 (1973)

    Article  Google Scholar 

  5. L.S. Yao, S.G. Moulic, Mixed convection along a wavy surface. J. Heat Transf. 111, 974–979 (1989)

    Article  Google Scholar 

  6. M.A. Hossain, H.S. Takhar, Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Heat Mass Transf. 31, 243–248 (1996)

    Article  ADS  Google Scholar 

  7. F.M. Hady, A.Y. Bakier, R.S.R. Gorla, Mixed convection boundary layer flow on a continuous flat plate with variable viscosity. Heat Mass Transf. 31, 169–172 (1996)

    Article  ADS  Google Scholar 

  8. M.A. Hossain, D.A.S. Rees, Combined heat and mass transfer in natural convection flow from a vertical wavy surface. Acta Mech. 136, 113–141 (1999)

    Article  Google Scholar 

  9. J.H. Jang, W.M. Yan, Mixed convection heat and mass transfer along a vertical wavy surface. Int. J. Heat Mass Transf. 47, 419–428 (2004)

    Article  Google Scholar 

  10. M.M. Molla, M.A. Hossain, Radiation effect on mixed convection laminar flow along a vertical wavy surface. Int. J. Therm. Sci. 46, 926–935 (2007)

    Article  Google Scholar 

  11. S. Siddiqa, M.A. Hossain, Mixed convection boundary layer flow over a vertical flat plate with radiative heat transfer. Appl. Math. 3, 705–716 (2012)

    Article  Google Scholar 

  12. D. Srinivasacharya, B. Mallikarjuna, R. Bhuvanavijaya, Radiation effect on mixed convection over a vertical wavy surface in Darcy porous medium with variable properties. J. Appl. Sci. Eng. 18(3), 265–274 (2015)

    MATH  Google Scholar 

  13. A. Bejan, A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101, 718–725 (1979)

    Article  Google Scholar 

  14. A. Bejan, Entropy Generation Through Heat and Fluid Flow (Wiley, New York, 1982)

    Google Scholar 

  15. A. Bejan, Entropy generation minimization (CRC Press, New York, 1996)

    MATH  Google Scholar 

  16. V.S. Arpaci, A. Selamet, Entropy production in boundary layers. J. Therm. Heat Transf. 4, 404–407 (1990)

    Article  Google Scholar 

  17. B. Abu-Hijleh, W. Heilen, Entropy generation due to laminar natural convection over a heated rotating cylinder. Int. J. Heat Mass Transfer 42, 4225–4233 (1999)

    Article  Google Scholar 

  18. O.M. Haddad, M. Abu-Qudais, B.A. Abu-Hijleh, A.M. Maqableh, Entropy generation due to laminar forced convection flow past a parabolic cylinder. Int. J. Numer. Methods Heat Fluid Flow 10, 770–779 (2000)

    Article  Google Scholar 

  19. S. Mahmud, R.A. Fraser, Analysis of mixed convection radiation interaction in a vertical channel: entropy generation. Int. J. Exergy 2, 330–339 (2002)

    Article  Google Scholar 

  20. M.Q. Al-Odat, R.A. Damseh, M.A. Al-Nimr, Effect of magnetic field on entropy generation due to laminar forced convection past a horizontal flat plate. Entropy 4, 293–303 (2004)

    Article  ADS  Google Scholar 

  21. O.M. Haddad, M.K. Alkam, M.T. Khasawneh, Entropy generation due to laminar forced convection in the entrance region of a concentric annulus. Energy 29, 35–55 (2004)

    Article  Google Scholar 

  22. O. Haddad, M. Abuzaid, M. Al-Nimr, Entropy generation due to laminar incompressible forced convection flow through parallel-plates microchannel. Entropy 6, 413–426 (2004)

    Article  ADS  Google Scholar 

  23. A.S. Butt, S. Munawar, A. Mehmood, A. Ali, Entropy analysis of mixed convective magnetohydrodynamic flow of a viscoelastic fluid over a stretching sheet, Z. Naturforsch. AJ. Phys. Sci. 67, 451–459 (2012)

    Article  ADS  Google Scholar 

  24. H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. u. Phys. 56, 1–37 (1908)

    MATH  Google Scholar 

  25. A. Mehmood, Viscous Flows: Stretching and Shrinking of Surfaces (Springer, Switzerland, 2017)

    Book  Google Scholar 

  26. P. Cherukat, Y. Na, T.J. Hanratty, Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theor. Comput. Fluid Dyn. 11, 109–134 (1998)

    Article  Google Scholar 

  27. T. Ohta, Y. Miyake, T. Kajishima, Direct numerical simulation of turbulent flow in a wavy channel. JSME Int. J. 41, 447–453 (1998)

    Article  ADS  Google Scholar 

  28. O. Errico, E. Stalio, Direct numerical simulation of turbulent forced convection in a wavy channel at low and order one Prandtl number. Int. J. Therm. Sci. 86, 374–386 (2014)

    Article  Google Scholar 

  29. E. Stalio, M. Piller, Direct numerical simulation of heat transfer in Converging-diverging wavy channels. ASME J. Heat Transf. 129, 769–777 (2007)

    Article  Google Scholar 

  30. E. Stalio, D. Angeli, G.S. Barozzi, Numerical simulation of forced convection over a periodic series of rectangular cavities at low Prandtl number. Int. J. Heat Fluid Flow 32, 1014–1023 (2011)

    Article  Google Scholar 

  31. T. Cebeci, P. Bradshaw, Momentum Transfer in Boundary layers (Hemisphere Publishing Corporation, New York, 1977)

    MATH  Google Scholar 

  32. T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer (Springer-Verlag, New York, 1988)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Iqbal, M.S. & Mehmood, A. Entropy generation in mixed convection flow past a vertical wavy surface. Eur. Phys. J. Plus 135, 111 (2020). https://doi.org/10.1140/epjp/s13360-019-00027-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-019-00027-w

Navigation