Skip to main content
Log in

An unsteady MHD Williamson fluid flow in a vertical porous channel with porous media and thermal radiation

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The current article covers the unsteady Williamson fluid flow towards vertical parallel porous plates through porous media. The Cartesian coordinate system is utilised to model the flow equations. Along with thermal radiation, the effect of the applied magnetic field is also taken into account. Furthermore, the vertical walls of the channel are employed to achieve velocity slip and temperature jump conditions. Convection is applied to assume that the stable plates swap heat with an outer fluid. The mathematical model is numerically solved via the bvp4c shooting technique in the computer software MATLAB. For various values \(-1\), 0, 1 of the ratio of the fluid temperature to the wall temperature, the impacts of numerous physical characteristics affecting temperature and velocity profile including Weissenberg number, magnetic permeability, Prandtl number, suction parameter, Knudsen number, Radiation parameter, frequency of oscillation, magnetic parameter and the fluid–wall conversation parameter are discussed graphically. The concluding results suggest that the fluid velocity at the solid–fluid interface is influenced by the magnetic field, alterations in suction or injection parameters and specific values of velocity slip coupled with temperature jump conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(b\) :

Channel width

\(B _{0}\) :

Magnetic field

\(C _{p}\) :

Specific heat at constant pressure

\(\textrm{Ln}\) :

Fluid–wall interaction parameter

\(M\) :

Hartmann number

\(\textrm{Nr}\) :

Radiation parameter

\(\textrm{Pr}\) :

Prandtl number

\(\textrm{Re}\) :

Reynolds number

\(U\) :

Dimensionless velocity

\(\textrm{We}\) :

Weissenberg number

S :

Suction parameter

T :

Temperature

\(T_{1}\) :

Heated wall temperature

\(T_{2}\) :

Cold wall temperature

u :

X direction velocity

\({g _{t}}\) :

Thermal accommodation coefficients

\({g _{v}}\) :

Tangential momentum coefficients

\({q _{r}}\) :

Surface heat flux

\(\beta\) :

Thermal expansion coefficient

\(\chi ^2\) :

Magnetic permeability

\(\Gamma\) :

Constant for the Williamson fluid

\(\gamma _{s}\) :

Ratio of specific heat

\(\kappa\) :

Thermal conductivity

\(\lambda\) :

Molecular mean free path

\(\mu\) :

Dynamic viscosity

\(\nu\) :

Kinematic viscosity

\(\omega\) :

Frequency of the oscillation

\(\rho\) :

Density

\(\sigma\) :

Electrical conductivity

\(\sigma *\) :

The Stefan–Boltzmann constant

\(\theta\) :

Dimensionless temperature

\(\xi\) :

Ratio of the fluid temperature to the wall temperature

\(\kappa *\) :

Mean absorption coefficient

References

  1. Alfvén, H.: Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405–406 (1942). https://doi.org/10.1038/150405d0

    Article  Google Scholar 

  2. Davidson, P.A.: An introduction to magnetohydrodynamics. Am. J. Phys. 70(7), 781–784 (2002). https://doi.org/10.1119/1.1482065

    Article  Google Scholar 

  3. Nadeem, S., Hussain, S., Lee, C.: Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 30, 619–625 (2013). https://doi.org/10.1590/S0104-66322013000300019

    Article  Google Scholar 

  4. Zehra, I., Yousaf, M.M., Nadeem, S.: Numerical solutions of Williamson fluid with pressure dependent viscosity. Results Phys. 5, 20–25 (2014). https://doi.org/10.1016/j.rinp.2014.12.002

    Article  Google Scholar 

  5. Megahed, A.M.: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation. J. Egypt. Math. Soc. 27(1), 1–10 (2019). https://doi.org/10.1186/s42787-019-0016-y

    Article  MathSciNet  Google Scholar 

  6. Shashikumar, N., Madhu, M., Sindhu, S., Gireesha, B., Kishan, N.: Thermal analysis of MHD Williamson fluid flow through a microchannel. Int. Commun. Heat Mass Tran. 127, 105582 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105582

    Article  Google Scholar 

  7. Shaheen, S., et al.: A case study of heat transmission in a Williamson fluid flow through a ciliated porous channel: A semi-numerical approach. Case Stud. Therm. Eng. 41, 102523 (2023). https://doi.org/10.1016/j.csite.2022.102523

    Article  Google Scholar 

  8. Reddy, G.J., Raju, R.S., Rao, J.A., Gorla, R.S.R.: Unsteady mhd heat transfer in Couette flow of water at 4oc in a rotating system with ramped temperature via finite element method. Int. J. Appl. Mech. Eng. (2017). https://doi.org/10.1515/ijame-2017-0009

    Article  Google Scholar 

  9. Andreozzi, A., Manca, O.: Radiation effects on natural convection in a vertical channel with an auxiliary plate. Int. J. Therm. Sci. 97, 41–55 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.05.013

    Article  Google Scholar 

  10. Khademi, M.: Retracted: Effect of thermal radiation on temperature differential in micro-channels filled with parallel porous media. Int. J. Therm. Sci. 99, 228–237 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.09.005

    Article  Google Scholar 

  11. Das, S., Jana, R., Makinde, O.: Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation. Alex. Eng. J. 55(1), 253–262 (2016). https://doi.org/10.1016/j.aej.2015.10.013

    Article  Google Scholar 

  12. Lopez, A., Ibanez, G., Pantoja, J., Moreira, J., Lastres, O.: Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int. J. Heat Mass Tran. 107, 982–994 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.126

    Article  Google Scholar 

  13. Jain, S., Parmar, A.: Radiation effect on MHD Williamson fluid flow over-stretching cylinder through porous medium with heat source. Appl. Fluid Dy. Proceed. (2017). https://doi.org/10.1007/978-981-10-5329-0_5

    Article  Google Scholar 

  14. Shit, G., Mondal, A., Sinha, A., Kundu, P.: Electro-osmotically driven MHD flow and heat transfer in micro-channel. Phy. A Stat. Mech. Appl. 449, 437–454 (2016). https://doi.org/10.1016/j.physa.2016.01.008

    Article  MathSciNet  Google Scholar 

  15. Umavathi, J.C., Chamkha, A.J., Manjula, M., Al-Mudhaf, A.F.: Radiative heat transfer of a two-fluid flow in a vertical porous stratum. Int. J. Fluid Mech. Res. 35(6), 510–543 (2008). https://doi.org/10.1615/InterJFluidMechRes.v35.i6.20

    Article  Google Scholar 

  16. Moshizi, S., Malvandi, A.: Magnetic field effects on nanoparticle migration at mixed convection of MHD nanofluids flow in microchannels with temperature-dependent thermophysical properties. J. Taiwan Inst. Chem. Eng. 66, 269–282 (2016). https://doi.org/10.1016/j.jtice.2016.06.036

    Article  Google Scholar 

  17. Falade, J., Ukaegbu, J.C., Egere, A., Adesanya, S.O.: MHD oscillatory flow through a porous channel saturated with porous medium. Alex. Eng. J. 56(1), 147–152 (2017). https://doi.org/10.1016/j.aej.2016.09.016

    Article  Google Scholar 

  18. Makinde, O., Mhone, P.: Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Rom. J. Phys. 50(9/10), 931–938 (2005)

    Google Scholar 

  19. Prakash, D., Muthtamilselvan, M.: Effect of radiation on transient MHD flow of micropolar fluid between a porous vertical channel with boundary conditions of the third kind. Ain. Shams. Eng. J. 5(4), 1277–1286 (2014). https://doi.org/10.1016/j.asej.2014.05.004

    Article  Google Scholar 

  20. Chauhan, D.S., Kumar, V.: Radiation effects on mixed convection flow and viscous heating in a vertical channel partially filled with a porous medium. J. Appl. Sci. Eng. 14(2), 97–106 (2011)

    Google Scholar 

  21. Umavathi, J., Sheremet, M.A., Mohiuddin, S.: Combined effect of variable viscosity and thermal conductivity on mixed convection flow of a viscous fluid in a vertical channel in the presence of first order chemical reaction. Eur. J. Mech. B/Fluid 58, 98–108 (2016). https://doi.org/10.1016/j.euromechflu.2016.04.003

    Article  MathSciNet  Google Scholar 

  22. Abbas, Z., Naveed, M., Hussain, M., Salamat, N.: Analysis of entropy generation for MHD flow of viscous fluid embedded in a vertical porous channel with thermal radiation. Alex. Eng. J. 59(5), 3395–3405 (2020). https://doi.org/10.1016/j.aej.2020.05.019

    Article  Google Scholar 

  23. Jha, B.K., Malgwi, P.B., Aina, B.: Hall effects on MHD natural convection flow in a vertical microchannel. Alex. Eng. J. 57(2), 983–993 (2018). https://doi.org/10.1016/j.aej.2017.01.038

    Article  Google Scholar 

  24. Umavathi, J.C., Kumar, J.P., Chamkha, A.J., Pop, I.: Mixed convection in a vertical porous channel. Trans. Porous Med. 61(3), 315–335 (2005). https://doi.org/10.1007/s11242-005-0260-5

    Article  MathSciNet  Google Scholar 

  25. Umavathi, J., Kumar, J.P., Chamkha, A.J.: Convective flow of two immiscible viscous and couple stress permeable fluids through a vertical channel. Turkish J. Eng. Env. Sci. 33(4), 221–244 (2009). https://doi.org/10.3906/muh-0905-29

    Article  Google Scholar 

  26. Raju, M., Varma, S., Rao, R.: Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate. J. Eng. Tech. 8(3), 35–40 (2013). https://doi.org/10.26634/jfet.8.3.2220

    Article  Google Scholar 

  27. Chamkha, A.J.: Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. Int. J. Heat Fluid Flow 21(6), 740–746 (2000). https://doi.org/10.1016/S0142-727X(00)00031-X

    Article  Google Scholar 

  28. Chamkha, A.J.: On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int. J. Heat Mass Transf. 45(12), 2509–2525 (2002). https://doi.org/10.1016/S0017-9310(01)00342-8

    Article  Google Scholar 

  29. Nisa, Z.U., Shah, N.A., Tlili, I., Ullah, S., Nazar, M.: Natural convection flow of second-grade fluid with thermal radiation and damped thermal flux between vertical channels. Alex. Eng. J. 58(4), 1119–1125 (2019). https://doi.org/10.1016/j.aej.2019.09.014

    Article  Google Scholar 

  30. Kumar, J.P., Umavathi, J.C., Chamkha, A.J., Pop, I.: Fully-developed free-convective flow of micropolar and viscous fluids in a vertical channel. Appl. Math. Model. 34(5), 1175–1186 (2010). https://doi.org/10.1016/j.apm.2009.08.007

    Article  MathSciNet  Google Scholar 

  31. Kumar, J.P., Umavathi, J.C., Chamkha, A.J., Ramarao, Y.: Mixed convective heat transfer of immiscible fluids in a vertical channel with boundary conditions of the third kind. Comput. Therm. Sci. Int. J. 9(5), 447–465 (2017). https://doi.org/10.1615/ComputThermalScien.2017019221

    Article  Google Scholar 

  32. Umavathi, J.C., Chamkha, A.J., Mateen, A., Mudhaf, A.A.: Unsteady two-fluid flow and heat transfer in a horizontal channel. Int. J. Heat Mass Transf. 42(2), 81–90 (2005). https://doi.org/10.1007/s00231-004-0565-x

    Article  Google Scholar 

  33. Srinivas, J., Murthy, J.R., Chamkha, A.J.: Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using HAM. Int. J. Num. Methods Heat Fluid Flow 26(34), 1027–1049 (2016). https://doi.org/10.1108/HFF-09-2015-0354

    Article  Google Scholar 

  34. Andreozzi, A., Manca, O.: Radiation effects on natural convection in a vertical channel with an auxiliary plate. Int. J. Therm. Sci. 97, 41–55 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.05.013

    Article  Google Scholar 

  35. Shampine, L.F., Kierzenka, J., Reichelt, M.W.: Solving boundary value problems for ordinary differential equations in Matlab with bvp4c. Tutorial Notes 2000, 1–27 (2000)

    Google Scholar 

  36. Kierzenka, J., Shampine, L.F.: A bvp solver based on residual control and the Matlab PSE. ACM Trans. Math. Soft. (TOMS) 27(3), 299–316 (2001). https://doi.org/10.1145/502800.502801

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the financial support of UGC, India, in the form of a Junior Research Fellowship under a research scheme grant (NTA Ref. No.: 201610200062) awarded to one of the authors Kalu Ram Sharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalu Ram Sharma.

Ethics declarations

Conflict of interest

The authors reaffirm that they are not aware of any personal or financial conflicts that might have appeared to bias the research described in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.R., Jain, S. An unsteady MHD Williamson fluid flow in a vertical porous channel with porous media and thermal radiation. Int J Adv Eng Sci Appl Math (2024). https://doi.org/10.1007/s12572-024-00371-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12572-024-00371-w

Keywords

Navigation