Skip to main content
Log in

An analytical study of physical models with inherited temporal and spatial memory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Du et al. (Sci. Reb. 3, 3431 (2013)) demonstrated that the fractional derivative order can be physically interpreted as a memory index by fitting the test data of memory phenomena. The aim of this work is to study analytically the joint effect of the memory index on time and space coordinates simultaneously. For this purpose, we introduce a novel bivariate fractional power series expansion that is accompanied by twofold fractional derivatives ordering \(\alpha\), \(\beta\in(0,1]\). Further, some convergence criteria concerning our expansion are presented and an analog of the well-known bivariate Taylor’s formula in the sense of mixed fractional derivatives is obtained. Finally, in order to show the functionality and efficiency of this expansion, we employ the corresponding Taylor’s series method to obtain closed-form solutions of various physical models with inherited time and space memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.A. Rossikhin, M.V. Shitikova, Appl. Mech. Rev. 63, 010801 (2010)

    Article  ADS  Google Scholar 

  2. B.N. Lundstrom, M.H. Higgs, W.J. Spain, A.L. Fairhall, Nat. Neurosci. 11, 1335 (2008)

    Article  Google Scholar 

  3. A.S. Balankin, J. Bory-Reyes, M. Shapiro, Physica A 444, 345 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  4. R.R. Nigmatullin, Phys. Status Solidi B 123, 739 (1984)

    Article  ADS  Google Scholar 

  5. C. Coussot, S. Kalyanam, R. Yapp, M. Insana, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 715 (2009)

    Article  Google Scholar 

  6. S. Butera, M. Paola, Ann. Phys. 350, 146 (2014)

    Article  ADS  Google Scholar 

  7. F. Mainardi, P. Paradisi, J. Comput. Acoust. 9, 1417 (2001)

    Article  MathSciNet  Google Scholar 

  8. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  9. T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes (Wiley-ISTE, London, Hoboken, 2014)

  10. V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)

  11. R. Herrmann, Fractional calculus: An Introduction for Physicists (World Scientific, Singapore, 2011)

  12. R.L. Bagley, P.J. Torvik, J. Rheol 30, 133 (1986)

    Article  ADS  Google Scholar 

  13. F.C. Meral, T.J. Royston, R. Magin, Commun. Nonlinear Sci. Numer. Simul. 15, 939 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. M.D. Paola, A. Pirrotta, A. Valenza, J. Mater. Sci. 43, 799 (2011)

    Google Scholar 

  15. R.C. Koeller, Trans. ASME J. Appl. Mech. 51, 299 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  16. A.H. Bhrawy, J.F. Alzaidy, M.A. Abdelkawy, A. Biswas, Nonlinear Dyn. 84, 1553 (2016)

    Article  Google Scholar 

  17. Y. Yang, Y. Chen, Y. Huang, H. Wei, Comput. Math. Appl. 73, 1218 (2017)

    Article  MathSciNet  Google Scholar 

  18. M. Zayernouri, G.E. Karniadakis, SIAM J. Sci. Comput. 36, A40 (2014)

    Article  Google Scholar 

  19. K.N. Le, W. McLean, K. Mustapha, SIAM J. Numer. Anal. 54, 1763 (2016)

    Article  MathSciNet  Google Scholar 

  20. B. Jin, R. Lazarov, Y. Liu, Z. Zhou, J. Comput. Phys. 281, 825 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  21. O.P. Agrawal, Nonlinear Dyn. 29, 145 (2002)

    Article  Google Scholar 

  22. Y. Nikolova, L. Boyadjiev, Fract. Calc. Appl. Anal. 13, 57 (2010)

    MathSciNet  Google Scholar 

  23. C. Le, A. Kumar, S. Kumar, X-J. Yang, J. Nonlinear Sci. Appl. 9, 5463 (2016)

    Article  MathSciNet  Google Scholar 

  24. A. Kumar, S. Kumar, Proc. Natl. Acad. Sci., India, Sect. A: Phys. Sci. 88, 95 (2018)

    Article  Google Scholar 

  25. D. Kumar, J. Singh, S. Kumar, Walailak J. Sci. Technol. 11, 711 (2014)

    Google Scholar 

  26. M.G. Sakar, F. Uludag, F. Erdogan, Appl. Math. Model. 40, 6639 (2016)

    Article  MathSciNet  Google Scholar 

  27. S. Liao, Appl. Math. Comput. 147, 499 (2004)

    MathSciNet  Google Scholar 

  28. K. Vishal, S. Kumar, S. Das, Appl. Math. Model. 36, 3630 (2012)

    Article  MathSciNet  Google Scholar 

  29. R.K. Pandey, O.P. Singh, V.K. Baranwal, Comput. Phys. Commun. 182, 134 (2011)

    Article  Google Scholar 

  30. J.-H. He, Phys. Lett. A 375, 3362 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  31. M.R. Yulita, M.S.M. Noorani, I. Hashim, Nonlinear Anal.: Real World Appl. 10, 1854 (2009)

    Article  MathSciNet  Google Scholar 

  32. S. Momani, Z. Odibat, Appl. Math. Comput. 177, 488 (2006)

    MathSciNet  Google Scholar 

  33. A.M. El-Sayed, M. Gaber, Phys. Lett. A 359, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Adomian, Math. Comput. Model. 13, 17 (1992)

    Article  Google Scholar 

  35. J.K. Zhou, Differential Transformation and its Applications for Electrical Circuits (Huazhong University Press, Wuhan, 1986)

  36. Y. Keskin, G. Oturanç, Int. J. Nonlinear Sci. Numer. Simul. 10, 741 (2009)

    Article  Google Scholar 

  37. J. Liu, G. Hou, Appl. Math. Comput. 217, 7001 (2011)

    MathSciNet  Google Scholar 

  38. S. Kumar, A. Kumar, D. Baleanu, Nonlinear Dyn. 85, 699 (2016)

    Article  Google Scholar 

  39. M. Alquran, H.M. Jaradat, M.I. Syam, Nonlinear Dyn. 90, 2525 (2017)

    Article  Google Scholar 

  40. A. Kumar, S. Kumar, S.-P. Yan, Fundam. Inf. 151, 213 (2017)

    Article  Google Scholar 

  41. O. Abu-Arqub, J. Adv. Res. Appl. Math. 5, 31 (2013)

    Article  MathSciNet  Google Scholar 

  42. M. Alquran, I. Jaradat, Nonlinear Dyn. 91, 2389 (2018)

    Article  Google Scholar 

  43. A. El-Ajou, O. Abu-Arqub, Z. Al-Zhour, S. Momani, Entropy 15, 5305 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  44. A. El-Ajou, O. Abu-Arqub, S. Momani, J. Comput. Phys. 293, 81 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  45. I. Jaradat, M. Al-Dolat, K. Al-Zoubi, M. Alquran, Chaos Solitons Fractals 108, 107 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  46. H. Jafari, V. Daftardar-Gejji, Appl. Math. Comput. 180, 488 (2006)

    MathSciNet  Google Scholar 

  47. S. Das, R. Kumar, Appl. Math. Comput. 217, 9905 (2011)

    MathSciNet  Google Scholar 

  48. J. Singh, D. Kumar, A. Kiliçman, Abstr. Appl. Anal. 2013, 934060 (2013)

    Article  Google Scholar 

  49. S. Kumar, M.M. Rashidi, Comput. Phys. Commun. 185, 1947 (2014)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Jaradat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaradat, I., Alquran, M. & Al-Khaled, K. An analytical study of physical models with inherited temporal and spatial memory. Eur. Phys. J. Plus 133, 162 (2018). https://doi.org/10.1140/epjp/i2018-12007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12007-1

Navigation