Skip to main content
Log in

Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an analytical method based on the generalized Taylors series formula together with residual error function, namely residual power series method (RPSM), is proposed for finding the numerical solution of the coupled system of time–fractional nonlinear Boussinesq–Burger’s equations. The Boussinesq–Burger’s equations arise in studying the fluid flow in a dynamic system and describe the propagation of the shallow water waves. Subsequently, the approximate solutions of time-fractional nonlinear coupled Boussinesq–Burger’s equations obtained by RPSM are compared with the exact solutions as well as the solutions obtained by modified homotopy analysis transform method. Then, we provide a rigorous convergence analysis and error estimate of RPSM. Numerical simulations of the results are depicted through different graphical representations and tables showing that present scheme is reliable and powerful in finding the numerical solutions of coupled system of fractional nonlinear differential equations like Boussinesq–Burger’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier (Nort h-Holland), Sci. Publishers, Amsterdam (2006)

    MATH  Google Scholar 

  2. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  3. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    Book  MATH  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transform and their Applications. Academic Press, New York (2015)

    Google Scholar 

  6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  7. Saha Ray, S., Bera, R.K.: Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput. 174, 329–336 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Odibat, Z., Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simulat. 7, 27–34 (2006)

    Article  MathSciNet  Google Scholar 

  9. He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Liao, S.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Vishal, K., Kumar, S., Das, S.: Application of homotopy analysis method for fractional swift Hohenberg equation-revisited. Appl. Math. Model. 36, 3630–3637 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pandey, R.K., Singh, O.P., Baranwal, V.K.: An analytic algorithm for the space-time fractional advection-dispersion equation. Comput. Phys. Commun. 182, 134–144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Srivastava, V.K., Awasthi, M.K., Kumar, S.: Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method. Egypt. J. Basic Appl. Sci. 1, 60–66 (2014)

    Article  Google Scholar 

  14. Kumar, S., Kocak, H., Yildirim, A.: A fractional model of gas dynamics equation and its approximate solution by using Laplace transform. Z. Naturforsch. 67a, 389–396 (2012)

    Google Scholar 

  15. Kumar, S.: A numerical study for solution of time fractional nonlinear shallow water equation in oceans. Z. Naturforsch. 68a, 1–7 (2013)

    Article  Google Scholar 

  16. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S., Gorder, R.A.V.: A new Jacobi spectral collocation method for solving 1+1 fractional Schrodinger equations and fractional coupled Schrodinger systems. Eur. Phys. J. Plus. 129(12), 1–21 (2014)

    Google Scholar 

  19. Bhrawy, A.H., Taha, T.M., Machado, J.A.T.: A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn. 81, 1023–1052 (2015)

    Article  MathSciNet  Google Scholar 

  20. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations. J. Comput. Nonlinear Dyn. 10, 021019 (1–8) (2015)

  21. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation. J. Vib. Control. (2015). doi:10.1177/1077546314566835

  22. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo. (2015). doi:10.1007/s10092-014-0132-x

  23. Bhrawy, A.H., Ezz-Eldien, S.S.: A new Legendre operational technique for delay fractional optimal control problems. Calcolo. (2015). doi:10.1007/s10092-015-0160-1

  24. Bhrawy, A.H., Doha, E.H., Machado, J.A.T., Ezz-Eldien, S.S.: An efficient numerical scheme for solving multi-dimensional fractional optimal control problems with a quadratic performance index. Asian J. Control. (2016). doi:10.1002/asjc.1109

  25. Zhang, J., Wu, Y., Li, X.: Quasi-periodic solution of the (2+1)-dimensional Boussinesq–Burgers soliton equation. Phys. A Stat. Mech. Appl. 319, 213–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, L., Zhang, L.F., Li, C.: Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation. Chin. Phys. B 17, 403–410 (2008)

    Article  Google Scholar 

  27. Rady, A.S.A., Khalfallah, M.: On soliton solutions for Boussinesq-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 15, 886–894 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen, A., Li, X.: Darboux transformation and soliton solutions of Boussinesq–Burgers equation. Chaos. Soliton Fract. 27, 43–52 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, P., Tian, B., Liu, W., Lü, X., Jiang, Y.: Lax pair Bcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves. Appl. Math. Comput. 218, 1726–1734 (2011)

  30. Gupta, A.K., Saha Ray, S.: Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq–Burger equations. Comput. Fluids 103, 34–41 (2014)

    Article  MathSciNet  Google Scholar 

  31. Kumar, S., Rashidi, M.M.: New analytical method for gas dynamic equation arising in shock fronts. Comput. Phys. Commun. 185, 1947–1954 (2014)

    Article  MathSciNet  Google Scholar 

  32. Kumar, S.: A new analytical modeling for telegraph equation via Laplace transform. Appl. Math. Model. 38, 3154–3163 (2014)

    Article  MathSciNet  Google Scholar 

  33. Odibat, Z., Bataineh, A.S.: An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials. Math. Methods Appl. Sci. 38(5), 991–1000 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Abu Arqub, O.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. 5, 31–52 (2013)

    Article  MathSciNet  Google Scholar 

  35. El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional Kdv-Burger equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  MathSciNet  Google Scholar 

  36. El-Ajou, A., Abu Arqub, O., Momani, S., Baleanu, D., Alsaedi, A.: A novel expansion iterative method for solving linear partial differential equation of fractional order. Appl. Math. Comput. (2015). doi:10.1016/j.amc.2014.12.121

  37. Liao, S.: An optimal homotopy—analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylors formula. Appl. Math. Comput. 186, 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the referees for carefully reading the paper and helpful comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, A. & Baleanu, D. Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn 85, 699–715 (2016). https://doi.org/10.1007/s11071-016-2716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2716-2

Keywords

Navigation