Skip to main content
Log in

A Modified Analytical Approach for Fractional Discrete KdV Equations Arising in Particle Vibrations

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present an effectiveness of the proposed analytical algorithm for nonlinear time fractional discrete KdV equations. The discrete KdV equation play an important role in modeling of complicated physical phenomena such as particle vibrations in lattices, current flow in electrical flow and pulse in biological chains. The proposed algorithm is amagalation of the homotopy analysis method, Laplace transform method and homotopy polynomials. First, we present an alternative framework of the proposed method which can be used simply and effectively to handle nonlinear problems arising in science and engineering. Then, mainly, we address the convergence study of nonlinear fractional differential equations with Laplace transform. Camparisons are made between the results of the proposed method and exact solutions. Illustrative examples are given to demonstrate the simplicity and efficiency of the proposed method. The new results reveal that the proposed method is explicit, efficient and easy to use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kilbas A, Srivastava HM, Trujillo JJ (2006) Theory and application of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Diethelm K (1997) An algorithm for the numerical solution of differential equations of fractional order. Electron Trans Numer Anal 5:1–6

    MathSciNet  MATH  Google Scholar 

  3. Oldham KB, Spanier J (1974) The fractional calculus: integration and differentiations of arbitrary order. Academic Press, New York

    MATH  Google Scholar 

  4. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  5. El-Sayed AMA, Behiry SH, Raslan WE (2010) Adomian’s decomposition method for solving an intermediate fractional advection–dispersion equation. Comput Math Appl 59:1759–1765

    Article  MathSciNet  MATH  Google Scholar 

  6. Ray SS, Bera RK (2005) An approximate solution of a nonlinear fractional differential equation by Adomian’s decomposition method. Appl Math Comput 167:561–571

    MathSciNet  MATH  Google Scholar 

  7. Ray SS, Bera RK (2006) Analytical solution of a fractional diffusion equation by Adomian’s decomposition method. Appl Math Comput 174:329–336

    MathSciNet  MATH  Google Scholar 

  8. Odibat Z, Momani S (2006) Application of variational iteration method to nonlinear differential equations of fractional order. Int J Nonlinear Sci Numer Simul 7:27–34

    Article  MathSciNet  Google Scholar 

  9. Sakar MG, Erdogan F, Yildirim A (2012) Variational iteration method for the time-fractional Fornberg-Whitham equation. Comput Math Appl 63:1382–1388

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang X, Zhao J, Liu J, Tang B (2014) Homotopy perturbation method for two dimensional time-fractional wave equation. Appl Math Model 38:5545–5552

    Article  MathSciNet  Google Scholar 

  11. Gupta AK, Ray SS (2014) Comparison between homotopy perturbation method and optimal homotopy asymptotic method for the soliton solutions of Boussinesq-Burger equations. Comput Fluids 103:34–41

    Article  MathSciNet  Google Scholar 

  12. Yazdi AA (2013) Applicability of homotopy perturbation method to study the nonlinear vibration of doubly curved cross-ply shells. Compos Struct 96:526–531

    Article  Google Scholar 

  13. Abbasbandy S (2010) Homotopy analysis method for the Kawahara equation. Nonlinear Anal 11:307–312

    Article  MathSciNet  MATH  Google Scholar 

  14. Abbasbandy S (2006) The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 360:109–113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Vishal K, Kumar S, Das S (2012) Application of homotopy analysis method for fractional swift Hohenberg equation-revisited. Appl Math Model 36:3630–3637

    Article  MathSciNet  MATH  Google Scholar 

  16. Hashmi MS, Khan N, Iqbal S (2012) Optimal homotopy asymptotic method for solving nonlinear Fredhlom integral equation of second kind. Appl Math Comput 218:10982–10989

    MathSciNet  MATH  Google Scholar 

  17. Liao SJ (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul 15:2003–2016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Pandey RK, Singh OP, Baranwal VK (2011) An analytic algorithm for the space–time fractional advection-dispersion equation. Comput Phys Commun 182:1134–1144

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Srivastava VK, Awasthi MK, Kumar S (2014) Analytical approximations of two and three dimensional time-fractional telegraphic equation by reduced differential transform method. Egypt J Basic Appl Sci 1:60–66

    Article  Google Scholar 

  20. Wei L, He Y (2014) Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl Math Model 38:1511–1522

    Article  MathSciNet  Google Scholar 

  21. Nijhoff F, Capel H (1995) The discrete Korteweg-de Vries equation. Acta Appl Math 39:133–158

    Article  MathSciNet  MATH  Google Scholar 

  22. Hongxiang Y, Xixiang X (2004) Hamilton structure and infinite number of conservation laws for the coupled discrete KdV equation. Appl Math J Chin Univ Ser B 19:374–380

    Article  MATH  Google Scholar 

  23. Rasin AG, Schiff J (2009) Infinite many conservation laws for the discrete KdV equation. J Phys A: Math Theor 42:1–16

    Article  MATH  Google Scholar 

  24. Ray SS (2013) Numerical solution and solitary wave solution of fractional KdV equations using modified fractional reduced differential transform method. Comput Math Phys 53:1870–1881

    Article  MathSciNet  Google Scholar 

  25. Khan Y, Vazquez-Leal H, Faraz N (2013) An auxiliary parameter method using adomian polynomials and Laplace transformation for nonlinear differential equation. Appl Math Model 37:2702–2708

    Article  MathSciNet  MATH  Google Scholar 

  26. Zou L, Zong Z, Wang Z, He L (2007) Solving the discrete KdV equation with homotopy analysis method. Phys Lett A 370:287–294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Biswas A (2009) Solitary wave solution for KdV equation with power law nonlinearity and time dependent coefficient. Nonlinear Dyn 58:345–348

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang S, Cai B (2014) Multi-soliton solutions of a variable-coefficient KdV hierarchy. Nonlinear Dyn 78:1593–1600

    Article  MathSciNet  Google Scholar 

  29. Huang Y (2014) Exact multi-wave solutions for the KdV equation. Nonlinear Dyn 77:437–444

    Article  MathSciNet  MATH  Google Scholar 

  30. Zuo DW, Gao YT, Meng GQ, Shen YJ, Yu X (2014) Multi-soliton solutions for the three- coupled KdV equations engendered by the Neumann system. Nonlinear Dyn 75(4):701–708

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang GW, Xu TZ, Ebadi G, Johnson S, Strong AJ, Biswas A (2014) Singular solitons shock waves and other solutions to potential KdV equation. Nonlinear Dyn 76:1059–1068

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao SJ (1992) The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D thesis, Shanghai Jiao Tong Univ

  33. Liao SJ (1997) Homotopy analysis method: a new analytical technique for nonlinear problems. Commun Nonlinear Sci Numer Simul 2:95–100

    Article  ADS  Google Scholar 

  34. Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  35. Park SH, Kim JH (2013) A semi-analytic princing formula for lookback option under a general stochastic volatility model. Stat Probab Lett 83:2537–2543

    Article  MATH  Google Scholar 

  36. Abbasbandy S, Shivanian E (2011) Predictor homotopy analysis method and its application to some nonlinear problems. Commun Nonlinear Sci Numer Simul 16:2456–2468

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Abbasbandy S, Shivanian E (2010) Prediction of multiplicity of solutions of nonlinear boundary value problems: novel application of homotopy analysis method. Commun Nonlinear Sci Numer Simul 15:3830–3846

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Watson LT (1979) Solving the nonlinear complementarity problem by a homotopy method. SIAM J Control Optim 17:36–46

    Article  MathSciNet  MATH  Google Scholar 

  39. Cheng J, Zhu SP, Liao SJ (2010) An explicit series approximation to the optimal exercise boundary of American put option. Commun Nonlinear Sci Numer Simul 15:1148–1158

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Zhu SP (2006) An exact and explicit solution for the valuation of American put option. Quant Finance 6:229–242

    Article  MathSciNet  MATH  Google Scholar 

  41. Wazwaz AM (2010) The combined Laplace transform-Adomain decomposition method for handling nonlinear Volterra Integro-differential equations. Appl Math Comput 216:1304–1309

    MathSciNet  MATH  Google Scholar 

  42. Khan M, Gondal MA, Kumar S (2012) A new analytical procedure for nonlinear integral equation. Math Comput Model 55:1892–1897

    Article  MathSciNet  MATH  Google Scholar 

  43. Khan Y, Wu QB (2011) Homotopy perturbation transform method for nonlinear equations using He’s Polynomials. Comput Math Appl 61:1963–1967

    Article  MathSciNet  MATH  Google Scholar 

  44. Kumar S (2013) A numerical study for solution of time fractional nonlinear shallow-water equation in oceans. Z Naturforschung 68a:1–7

    Article  Google Scholar 

  45. Kumar S, Kocak H, Yildirim A (2012) A fractional model of gas dynamics equation by using Laplace transform. Z Naturforschung 67a:389–396

    ADS  Google Scholar 

  46. Kumar S, Rashidi MM (2014) New analytical method for gas dynamic equation arising in shock fronts. Comput Phys Commun 185:1947–1954

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Kumar S (2014) A new analytical modelling for telegraph equation via Laplace transform. Appl Math Model 38:3154–3163

    Article  MathSciNet  Google Scholar 

  48. Khader MM, Kumar S, Abbasbandy S (2013) New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology. Chin Phys B 22:110201

    Article  ADS  Google Scholar 

  49. Podlubny I (1999) Fractional differential equations. Academic Press, New York, USA

    MATH  Google Scholar 

  50. Odibat Z, Bataineh SA (2014) An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials. Math Methods Appl Sci 38:991–1000

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, S. A Modified Analytical Approach for Fractional Discrete KdV Equations Arising in Particle Vibrations. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 88, 95–106 (2018). https://doi.org/10.1007/s40010-017-0369-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0369-2

Keywords

Navigation