Skip to main content
Log in

A new approach to multi-delay matrix valued fractional linear differential equations with constant coefficients

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this work we obtain a new generalization of the multi-delay perturbation of the two parameter Mittag-Leffler function introduced recently by Mahmudov in the context of multi-delay fractional differential equations [36]. The generalization is introduced to extend Mahmudov results to include besides discrete delay also pantograph fractional differential equations and can be useful to generalize previous work due to Putzer on the representation of the usual matrix exponential avoiding the Jordan canonical form [46]. We adapt Putzer’s representation to the fractional setting with delay using an extension of the Omega Matrix Calculus in order to deal with matrices over a field of fractions of a suitable commutative ring instead of the usual complex field. In contrast to previous representations, ours involves only a fixed finite number of matrix powers and no spectral information is required to compute the solutions of the fractional differential equations. Furthermore, by specializing to integer order systems we show that several results of the literature are special cases of our general formulation including a version of Putzer’s original representation. The Dickson polynomials of the second kind play an intrinsic and important role in our new representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahlbrandt, C.D., Ridenhour, J.: Floquet theory for time scales and Putzer representations of matrix logarithms. J. Differ. Equ. Appl. 9(1), 77–92 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Paule, P., Riese, A.: MacMahon’s partition analysis: the Omega package. Eur. J. Combin. 22(7), 887–904 (2001)

    MathSciNet  MATH  Google Scholar 

  3. Axler, S.: Linear Algebra Done Right. Springer, New York (2015)

    MATH  Google Scholar 

  4. Aydin, M., Mahmudov, N.I.: On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices. Chaos Solitons Fractals 161, 112372 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Ben Taher, R., Mouline, M., Rachidi, M.: Fibonacci-Horner decomposition of the matrix exponential and the fundamental system of solutions. Electron. J. Linear Algebra. 15, 178–190 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ben Taher, R., Rachidi, M.: Linear recurrence relations in the algebra of matrices and applications. Linear Algebra Appl. 330(1–3), 15–24 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Ben Taher, R., Rachidi, M.: Linear matrix differential equations of higher-order and applications. Electron. J. Differ. Equ. 2008(95), 1–12 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Brown, W.C.: Matrices over Commutative Rings. Marcel Dekker, New York (1993)

    MATH  Google Scholar 

  9. Bruschi, M., Ricci, P.E.: An explicit formula for \(f(A)\) and the generating functions of the generalized Lucas polynomials. SIAM J. Math. Anal. 13(1), 162–165 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Chen, W.Y.C., Louck, J.D.: The combinatorial power of the companion matrix. Linear Algebra Appl. 232, 261–278 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, H.-W., Yau, S.S.-T.: More explicit formulas for the matrix exponential. Linear Algebra Appl. 262, 131–163 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York (2013)

    MATH  Google Scholar 

  13. Elaydi, S.N., Harris, W.A., Jr.: On the computation of \(A^n\). SIAM Rev. 40(4), 965–971 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Failla, G., Zingales, M.: Advanced materials modelling via fractional calculus: challenges and perspectives. Philos. Trans. Roy. Soc. A 378, 20200050 (2020)

    Google Scholar 

  15. Francisco Neto, A.: Matrix analysis and Omega calculus. SIAM Rev. 62(1), 264–280 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Francisco Neto, A.: An approach to isotropic tensor functions and their derivatives via Omega matrix calculus. J. Elasticity 141, 165–180 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Francisco Neto, A.: Extending Putzer’s representation to all analytic matrix functions via omega matrix calculus. Electron. J. Differ. Equ. 2021, 1–18 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Francisco Neto, A.: Matrix computations with the Omega calculus. Linear Multilinear Algebra 70, 5075–5106 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Gantmacher, F.R.: The Theory of Matrices. AMS Chelsea Publishing (1959)

  20. Garrappa, R., Popolizio, M.: Computing the matrix Mittag-Leffler function with applications to fractional calculus. J. Sci. Comput. 77(1), 129–153 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Giscard, P.-L., Thwaite, S.J., Jaksch, D.: Evaluating matrix functions by resummations on graphs: the method of path-sums. SIAM J. Matrix Anal. Appl. 34(2), 445–469 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  24. Iserles, A.: On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 4(1), 1–38 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Izadi, M., Srivastava, H.M.: A novel matrix technique for multi-order pantograph differential equations of fractional order. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 477(2253), 20210321 (2021)

  26. Kantor, I.L., Trishin, I.M.: Formulas for powers and functions of matrices. Linear Algebra Appl. 186, 1–13 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  28. Koch, C.T., Spence, J.C.H.: A useful expansion of the exponential of the sum of two non-commuting matrices, one of which is diagonal. J. Phys. A: Math. Gen. 36, 803–816 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Kwapisz, M.: Remarks on the calculation of the power of a matrix. J. Difference Equ. Appl. 10(2), 139–149 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: With Applications. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  31. Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials. Pitman Monographs and Surveys in Pure and Applied Math. Wiley, New York (1993)

    MATH  Google Scholar 

  32. Liu, L., Dong, Q., Gang, L.: Exact solutions of fractional oscillation systems with pure delay. Fract. Calc. Appl. Anal. 25(4), 1688–1712 (2022). https://doi.org/10.1007/s13540-022-00062-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, L., Dong, Q., Gang, L.: Exact solutions and finite time stability for higher fractional-order differential equations with pure delay. Math. Methods Appl. Sci. 46(2), 2334–2353 (2022)

    MathSciNet  Google Scholar 

  34. Liu, M.Z., Dongsong, L.: Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math. Comput. 155(3), 853–871 (2004)

    MathSciNet  MATH  Google Scholar 

  35. MacMahon, P.A.: Combinatory Analysis, Volumes I and II, p. 137. AMS Chelsea Publishing, Providence (2001)

    Google Scholar 

  36. Mahmudov, N.I.: Multi-delayed perturbation of Mittag–Leffler type matrix functions. J. Math. Anal. Appl. 505(1), 125589 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Marrero, J.A., Ben Taher, R., El Khatabi, Y., Rachidi, M.: On explicit formulas of the principal matrix \(p\)th root by polynomial decompositions. Appl. Math. Comput. 242, 435–443 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Marrero, J.A., Ben Taher, R., Rachidi, M.: On explicit formulas for the principal matrix logarithm. Appl. Math. Comput. 220, 142–148 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Mandujano, J.R., Verde-Star, L.: Explicit expressions for the matrix exponential function obtained by means of an algebraic convolution formula. Electron. J. Differ. Equ. 2014(79), 1–7 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Michiels, W., Niculescu, S.-I.: Stability and Stabilization of Time-delay Systems: An Eigenvalue-based Approach approach. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  41. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  42. Natalini, P., Ricci, P.E.: Solution of linear dynamical systems using Lucas polynomials of the second kind. Appl. Math. 7(07), 616 (2016)

    Google Scholar 

  43. Pawłuszewicz, E.: Remarks on Mittag–Leffler discrete function and Putzer algorithm for fractional \(h\)-difference linear equations, Theory and applications of non-integer order system, pp. 89–99. Springer, Cham (2017)

    MATH  Google Scholar 

  44. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  45. Popolizio, M.: On the matrix Mittag-Leffler function: theoretical properties and numerical computation. Mathematics 27(12), 1140 (2019)

    Google Scholar 

  46. Putzer, E.J.: Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients. Amer. Math. Monthly 73(1), 2–7 (1966)

    MathSciNet  MATH  Google Scholar 

  47. Rinehart, R.F.: The equivalence of definitions of a matric function. Amer. Math. Monthly 62(6), 395–414 (1955)

    MathSciNet  MATH  Google Scholar 

  48. Rodrigo, M.R.: On fractional matrix exponentials and their explicit calculation. J. Differ. Equ. 261(7), 4223–4243 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Ross, B.: Fractional calculus. Math. Mag. 50(3), 115–122 (1977)

    MathSciNet  MATH  Google Scholar 

  50. Sadeghi, A., Cardoso, J.R.: Some notes on properties of the matrix Mittag-Leffler function. Appl. Math. Comput. 338, 733–738 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    MATH  Google Scholar 

  52. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer Science & Business Media (2011)

  53. Tarasov, V.E.: Mathematical Economics: Application of Fractional Calculus. Multidisciplinary Digital Publishing Institute, Basel (2020)

    Google Scholar 

  54. Verde-Star, L.: Functions of matrices. Linear Algebra Appl. 406, 285–300 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Youssri, Y.H., Abd-Elhameed, W.M., Mohamed, A.S., Sayed, S.M.: Generalized Lucas polynomial sequence treatment of fractional pantograph differential equation. Int. J. Appl. Comp. Math. 7(27), 1–16 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Francisco Neto.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest. The author did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neto, A.F. A new approach to multi-delay matrix valued fractional linear differential equations with constant coefficients. Fract Calc Appl Anal 26, 2202–2236 (2023). https://doi.org/10.1007/s13540-023-00183-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00183-y

Keywords

Mathematics Subject Classification

Navigation