Skip to main content
Log in

Thermodynamic stability of hard sphere crystals in dimensions 3 through 10

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Although much is known about the metastable liquid branch of hard spheres—from low dimension d up to \({d\rightarrow \infty }\)—its crystal counterpart remains largely unexplored for \(d>3\). In particular, it is unclear whether the crystal phase is thermodynamically stable in high dimensions and thus whether a mean-field theory of crystals can ever be exact. In order to determine the stability range of hard sphere crystals, their equation of state is here estimated from numerical simulations, and fluid-crystal coexistence conditions are determined using a generalized Frenkel–Ladd scheme to compute absolute crystal free energies. The results show that the crystal phase is stable at least up to \(d={10}\), and the dimensional trends suggest that crystal stability likely persists well beyond that point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data relevant to this work have been archived and can be accessed at the Duke Digital Repository [57].

References

  1. G. Battimelli, G. Ciccotti, P. Greco, Computer Meets Theoretical Physics: The New Frontier of Molecular Simulation, The Frontiers Collection (Springer International Publishing, NY, 2020). https://doi.org/10.1007/978-3-030-39399-1

    Book  Google Scholar 

  2. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Annu. Rev. Condens. Matter Phys. 8, 265 (2017). https://doi.org/10.1146/annurev-conmatphys-031016-025334

    Article  ADS  Google Scholar 

  3. G. Parisi, F. Zamponi, Rev. Mod. Phys. 82, 789 (2010). https://doi.org/10.1103/RevModPhys.82.789

  4. G. Parisi, P. Urbani, F. Zamponi, Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge University Press, Cambridge, 2020)

    Book  Google Scholar 

  5. B. Charbonneau, P. Charbonneau, G. Tarjus, Phys. Rev. Lett. 108, 035701 (2012). https://doi.org/10.1103/PhysRevLett.108.035701

    Article  ADS  Google Scholar 

  6. B. Charbonneau, P. Charbonneau, G. Tarjus, J. Chem. Phys. 138, 12A515 (2013). https://doi.org/10.1063/1.4770498

    Article  Google Scholar 

  7. P. Charbonneau, Y. Jin, G. Parisi, F. Zamponi, Proc. Natl. Acad. Sci. U.S.A. 111, 15025 (2014). https://doi.org/10.1073/pnas.1417182111

  8. M. Mangeat, F. Zamponi, Phys. Rev. E 93, 012609 (2016). https://doi.org/10.1103/PhysRevE.93.012609

    Article  ADS  Google Scholar 

  9. J.A. van Meel, D. Frenkel, P. Charbonneau, Phys. Rev. E 79, 030201 (2009a). https://doi.org/10.1103/PhysRevE.79.030201

    Article  Google Scholar 

  10. J.A. van Meel, B. Charbonneau, A. Fortini, P. Charbonneau, Phys. Rev. E 80, 061110 (2009). https://doi.org/10.1103/PhysRevE.80.061110

    Article  ADS  Google Scholar 

  11. M. Skoge, A. Donev, F.H. Stillinger, S. Torquato, Phys. Rev. E 74, 041127 (2006). https://doi.org/10.1103/PhysRevE.74.041127

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Charbonneau, A. Ikeda, J.A. van Meel, K. Miyazaki, Phys. Rev. E 81, 040501 (2010). https://doi.org/10.1103/PhysRevE.81.040501

    Article  ADS  Google Scholar 

  13. J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Grundlehren der mathematischen Wissenschaften (Springer-Verlag, New York, 1999). https://www.springer.com/gp/book/9781475722499

  14. N. Clisby, B.M. McCoy, J. Stat. Phys. 122, 15 (2006). https://doi.org/10.1007/s10955-005-8080-0

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Bishop, P.A. Whitlock, J. Chem. Phys. 123, 014507 (2005). https://doi.org/10.1063/1.1874793

    Article  ADS  Google Scholar 

  16. L. Lue, M. Bishop, Phys. Rev. E 74, 021201 (2006). https://doi.org/10.1103/PhysRevE.74.021201

    Article  ADS  Google Scholar 

  17. C. Zhang, B.M. Pettitt, Mol. Phys. 112, 1427 (2014). https://doi.org/10.1080/00268976.2014.904945

    Article  ADS  Google Scholar 

  18. D. Frenkel, A.J.C. Ladd, J. Chem. Phys. 81, 3188 (1984). https://doi.org/10.1063/1.448024

    Article  ADS  Google Scholar 

  19. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic Press, NY, 2001)

    MATH  Google Scholar 

  20. V. Khanna, J. Anwar, D. Frenkel, M.F. Doherty, B. Peters, J. Chem. Phys. 154, 164509 (2021). https://doi.org/10.1063/5.0044833

    Article  ADS  Google Scholar 

  21. M. Best, IEEE Trans. Inf. Theory 26, 738 (1980). https://doi.org/10.1109/TIT.1980.1056269

    Article  Google Scholar 

  22. We do not here consider the special case \(d=2\), for which the liquid to solid transition proceeds through a hexatic phase, with a weakly first-order liquid-hexatic transition and a continuous hexatic-solid transition [38,58]. Our methodology is indeed not adapted to this situation

  23. The term Bravais lattice is here used to denote what is known in the mathematical literature simply as a lattice. Within physics and chemistry communities, \(P_{10c}\) could be said to be a lattice with a \(40\)-particle basis, but we instead describe it as a non-Bravais-lattice packing to minimize possible confusion with the mathematical terminology

  24. H.S.M. Coxeter, J.A. Todd, Can. J. Math. 5, 384 (1953). https://doi.org/10.4153/CJM-1953-043-4

    Article  Google Scholar 

  25. J. Conway, N. Sloane, IEEE Trans. Inf. Theory 28, 227 (1982). https://doi.org/10.1109/TIT.1982.1056484

    Article  Google Scholar 

  26. P. Charbonneau, Y. Hu, J. Kundu, P. Morse, In preparation (2021)

  27. P. Charbonneau, P. Morse, W. Perkins, F. Zamponi, In preparation (2021)

  28. S. Pieprzyk, M.N. Bannerman, A.C. Brańka, M. Chudak, D.M. Heyes, Phys. Chem. Chem. Phys. 21, 6886 (2019). https://doi.org/10.1039/C9CP00903E

    Article  Google Scholar 

  29. K.R. Hall, J. Chem. Phys. 57, 2252 (1972). https://doi.org/10.1063/1.1678576

    Article  ADS  Google Scholar 

  30. R.J. Speedy, J. Phys. Condens. Matter 10, 4387 (1998). https://doi.org/10.1088/0953-8984/10/20/006

    Article  ADS  Google Scholar 

  31. P. Tarazona, Phys. Rev. Lett. 84, 694 (2000). https://doi.org/10.1103/PhysRevLett.84.694

    Article  ADS  Google Scholar 

  32. J.M. Polson, E. Trizac, S. Pronk, D. Frenkel, J. Chem. Phys. 112, 5339 (2000). https://doi.org/10.1063/1.481102

    Article  ADS  Google Scholar 

  33. B. Groh, B. Mulder, J. Chem. Phys. 114, 3653 (2001). https://doi.org/10.1063/1.1342816

    Article  ADS  Google Scholar 

  34. G.M. Torrie, J.P. Valleau, J. Comput. Phys. 23, 187 (1977). https://doi.org/10.1016/0021-9991(77)90121-8

    Article  ADS  Google Scholar 

  35. P. Charbonneau, A. Ikeda, G. Parisi, F. Zamponi, Phys. Rev. Lett. 107, 185702 (2011). https://doi.org/10.1103/PhysRevLett.107.185702

    Article  ADS  Google Scholar 

  36. N.B. Wilding, A.D. Bruce, Phys. Rev. Lett. 85, 5138 (2000). https://doi.org/10.1103/PhysRevLett.85.5138

    Article  ADS  Google Scholar 

  37. N. B. Wilding, Comput. Phys. Commun. 146, 99 (2002). https://doi.org/10.1016/S0010-4655(02)00440-X

  38. M. Engel, J.A. Anderson, S.C. Glotzer, M. Isobe, E.P. Bernard, W. Krauth, Phys. Rev. E 87, 042134 (2013). https://doi.org/10.1103/PhysRevE.87.042134

    Article  ADS  Google Scholar 

  39. J. Ruiz-Franco, E. Zaccarelli, H.J. Schöpe, W. van Megen, J. Chem. Phys. 151, 104501 (2019). https://doi.org/10.1063/1.5114720

  40. X.-Z. Wang, J. Chem. Phys. 122, 044515 (2005). https://doi.org/10.1063/1.1840444

    Article  ADS  Google Scholar 

  41. C. A. Rogers, Proc. London Math. Soc. s3-8, 609 (1958) https://doi.org/10.1112/plms/s3-8.4.609

  42. H. Cohn, N. Elkies, Ann. Math. 157, 689 (2003). https://doi.org/10.4007/annals.2003.157.689

    Article  MathSciNet  Google Scholar 

  43. M. S. Viazovska, Ann. Math 185, 991 (2017). https://www.jstor.org/stable/26395747

  44. H. Cohn, Not. Am. Math. Soc. 64, 102 (2017). https://doi.org/10.1090/noti1474

    Article  ADS  Google Scholar 

  45. C.D. Estrada, M. Robles, J. Chem. Phys. 134, 044115 (2011). https://doi.org/10.1063/1.3530780

    Article  ADS  Google Scholar 

  46. W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968). https://doi.org/10.1063/1.1670641

    Article  ADS  Google Scholar 

  47. J.P.J. Michels, N.J. Trappeniers, Phys. Lett. A 104, 425 (1984). https://doi.org/10.1016/0375-9601(84)90749-7

    Article  ADS  Google Scholar 

  48. R.J. Speedy, J. Phys.: Condens. Matter 9, 8591 (1997). https://doi.org/10.1088/0953-8984/9/41/006

    Article  ADS  Google Scholar 

  49. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 27, 1208 (1957). https://doi.org/10.1063/1.1743957

    Article  ADS  Google Scholar 

  50. G. Bryant, S.R. Williams, L. Qian, I.K. Snook, E. Perez, F. Pincet, Phys. Rev. E 66, 060501 (2002). https://doi.org/10.1103/PhysRevE.66.060501

    Article  ADS  Google Scholar 

  51. C. Vega, E.G. Noya, J. Chem. Phys. 127, 154113 (2007). https://doi.org/10.1063/1.2790426

    Article  ADS  Google Scholar 

  52. D. Richard, T. Speck, J. Chem. Phys. 148, 224102 (2018a). https://doi.org/10.1063/1.5025394

    Article  ADS  Google Scholar 

  53. D. Richard, T. Speck, J. Chem. Phys. 148, 124110 (2018b). https://doi.org/10.1063/1.5016277

    Article  ADS  Google Scholar 

  54. M. Bültmann, T. Schilling, Phys. Rev. E 102, 042123 (2020). https://doi.org/10.1103/PhysRevE.102.042123

  55. P.F. Damasceno, M. Engel, S.C. Glotzer, Science 337, 453 (2012). https://doi.org/10.1126/science.1220869

    Article  ADS  Google Scholar 

  56. R.D. Batten, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 061105 (2010). https://doi.org/10.1103/PhysRevE.81.061105

    Article  ADS  Google Scholar 

  57. “Duke digital repository,” https://doi.org/10.7924/r4jh3mw3w

  58. E.P. Bernard, W. Krauth, Phys. Rev. Lett. 107, 155704 (2011). https://doi.org/10.1103/PhysRevLett.107.155704

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Yi Hu, Irem Altan, and Francesco Zamponi for fruitful discussions. Additionally, we thank Henry Cohn for suggesting to expand this work to \(d=10\). This work was supported by grants from the Simons Foundation (#454937, Patrick Charbonneau) and from the National Science Foundation under Grant DMR-2026271 (Robert Hoy). The computations were carried out on the Duke Compute Cluster (DCC), for which the authors thank Tom Milledge’s assistance.

Author information

Authors and Affiliations

Authors

Contributions

PC, RSH, and PKM designed the research and wrote the manuscript; CMG and PKM performed simulations; PC, CMG, RSH, and PKM analyzed data. Author list is alphabetical.

Corresponding author

Correspondence to Peter K. Morse.

Free energy of a single particle in the periodic reference crystal field

Free energy of a single particle in the periodic reference crystal field

A minimal model of the periodic potential crystal reference calculation is a single particle evolving in the field given by Eq. (18) (see Fig. 5). Because the problem can then be solved analytically, it provides a robust benchmark for our numerical implementation and its optimization.

Fig. 7
figure 7

Integrand of Eq. (19) for a single particle in the periodic \(d=3\) reference crystal from direct integration (black line), direct simulation of the periodic potential (red points), and simulation of the umbrella potential of Eq. (21) (blue points). The different results are indistinguishable below \(\lambda \approx 10\), but for \(\lambda \gtrsim 10\) results from the umbrella potential deviate from the correct solution due to poor sampling of the bottom of the potential well, wherein the particle is then largely confined

The integrand of Eq. (19) can then be written explicitly as

$$\begin{aligned} \langle U({\mathbf {r}},\lambda ')\rangle _{\lambda '} = \frac{\int U({\mathbf {r}},\lambda ') \exp [-\beta U({\mathbf {r}},\lambda ')]d^d{\mathbf {r}}}{\int \exp [-\beta U({\mathbf {r}},\lambda ')] d^d{\mathbf {r}}}, \end{aligned}$$
(A1)

and thus the system free energy is \(\beta F = -\beta \int _0^\lambda \langle U({\mathbf {r}},\lambda ')\rangle _{\lambda '}\). Although the integrand lacks a closed form expression for \(d>1\), it can be evaluated numerically with very high accuracy for any \(\lambda \) and d. The results for \(d=3\) serve as an analytical reference in Fig. 7. Equivalently, the free energy can be computed directly from the standard statistical mechanics expression, \(\beta F = -\ln Z\), for the partition function Z, and hence

$$\begin{aligned} \beta F = -\ln \int \exp [-\beta U({\mathbf {r}},\lambda )] d^d {\mathbf {r}}. \end{aligned}$$
(A2)

This expression also does not have a closed form, but can be calculated numerically with high accuracy.

These quantities can be used to benchmark the standard Monte Carlo sampling of the periodic potential as well as by the umbrella sampling scheme described in Sect. 4.3. For \(\lambda \gg 1\) standard Monte Carlo sampling leaves the particle trapped at the bottom of one of the wells, but as \(\lambda \) decreases the particle regularly explores barriers and crosses over into neighboring wells. Given sufficient sampling, the intermediate \(\lambda \) regime is recovered (see Fig. 7), and thus the various features of the direct integration are recapitulated.

This outcome contrasts with Monte Carlo simulations that use the umbrella sampling approach of Eq. (22). In this case, the particle samples all points in the box with equal probability, even though the actual contribution to the partition function of each point is proportional to its Boltzmann weight, \(\exp [-\lambda \beta U]\). In the single particle case, both simple Monte Carlo and umbrella sampling work well for \(\lambda \lesssim 10\). However, for \(N>1\) and \(\lambda \sim 1/N\) standard Monte Carlo sampling fails because it then becomes rare for simulations to produce particles which are near the top of energy barriers, whose contributions remain important for accurately calculating the free energy.

For \(\lambda \gg 1\), the Boltzmann weight \(\exp [-\lambda \beta U]\) concentrates, and the only significant contributions to Z come from a small collection of (degenerate) points in phase space, i.e., the bottom of each well. Both the numerator and the denominator of Eq. (21) diverge in this limit, making the evaluation numerically unstable. Physically, this instability corresponds to \(\langle U \rangle \) being vastly undersampled compared with other \(\lambda \) regimes, thus leading to marked deviation from the exact result (Fig. 7).

This analysis motivates the high \(\lambda \) cutoff used in the umbrella sampling for \(N>1\). Because the Boltzmann weight \(\exp [-\lambda \beta \sum _i U_i]\) acts on the total energy, the same cutoff of \(\lambda =1\) can be used. However, as N grows, it is important to sum these contributions carefully, because \(\theta \) then also grows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charbonneau, P., Gish, C.M., Hoy, R.S. et al. Thermodynamic stability of hard sphere crystals in dimensions 3 through 10. Eur. Phys. J. E 44, 101 (2021). https://doi.org/10.1140/epje/s10189-021-00104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00104-y

Navigation