Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness

Abstract.

Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate simulations in a split-bottom shear cell geometry. The position and velocities of scattered tracer particles are tracked as they move with the bulk flow by analyzing images. We then use a new technique to extract the continuum velocity field, applying coarse-graining with the postprocessing toolbox MercuryCG on the discrete experimental PTV data. For intermediate filling heights, the dependence of the shear (or angular) velocity on the radial coordinate at the free surface is well fitted by an error function. From the error function, we get the width and the centre position of the shear band. We investigate the dependence of these shear band properties on filling height and rotation frequencies of the shear cell for dry glass beads for rough and smooth wall surfaces. For rough surfaces, the data agrees with the existing experimental results and theoretical scaling predictions. For smooth surfaces, particle-wall slippage is significant and the data deviates from the predictions. We further study the effect of cohesion on the shear band properties by using small amount of silicon oil and glycerol as interstitial liquids with the glass beads. While silicon oil does not lead to big changes, glycerol changes the shear band properties considerably. The shear band gets wider and is situated further inward with increasing liquid saturation, due to the correspondingly increasing trend of particles to stick together.

Graphical abstract

References

  1. 1

    T. Kawaguchi, Adv. Powder Technol. 21, 235 (2010)

  2. 2

    K.M. Hill, A. Caprihan, J. Kakalios, Phys. Rev. Lett. 78, 50 (1997)

  3. 3

    M. Nakagawa, S. Altobelli, A. Caprihan, E. Fukushima, E.-K. Jeong, Exp. Fluids 16, 54 (1993)

  4. 4

    E. Ehrichs, H. Jaeger, G.S. Karczmar, J.B. Knight, V.Y. Kuperman, S.R. Nagel, Science 267, 1632 (1995)

  5. 5

    G.W. Baxter, R. Behringer, T. Fagert, G.A. Johnson, Phys. Rev. Lett. 62, 2825 (1989)

  6. 6

    C.F. Harwood, Powder Technol. 16, 51 (1977)

  7. 7

    G. Rátkai, Powder Technol. 15, 187 (1976)

  8. 8

    M. Guler, T.B. Edil, P.J. Bosscher, J. Comput. Civil Eng. 13, 116 (1999)

  9. 9

    H. Capart, D. Young, Y. Zech, Exp. Fluids 32, 121 (2002)

  10. 10

    D. Bonamy, F. Daviaud, L. Laurent, Phys. Fluids 14, 1666 (2002)

  11. 11

    R. Lueptow, A. Akonur, T. Shinbrot, Exp. Fluids 28, 183 (2000)

  12. 12

    G.A. Bokkers, M. van Sint Annaland, J.A.M. Kuipers, Powder Technol. 140, 176 (2004)

  13. 13

    J.A. Laverman, I. Roghair, M.v.S. Annaland, H. Kuipers, The Canadian J. Chem. Eng. 86, 523 (2008)

  14. 14

    C. Zeilstra, J. Collignon, M. Van der Hoef, N. Deen, J. Kuipers, Powder Technol. 184, 166 (2008)

  15. 15

    A. Jarray, V. Magnanimo, S. Luding, Powder Technol. 341, 126 (2019)

  16. 16

    H.-T. Chou, C.-F. Lee, Granular Matter 11, 13 (2009)

  17. 17

    W.-L. Yang, S.-S. Hsiau, Chem. Eng. Sci. 61, 6085 (2006)

  18. 18

    C.-C. Liao, S.-S. Hsiau, Chem. Eng. Sci. 64, 2562 (2009)

  19. 19

    S. Shirsath, J. Padding, H. Clercx, J. Kuipers, Chem. Eng. Sci. 134, 312 (2015)

  20. 20

    B. Sokoray-Varga, J. Józsa, Period. Polytech. Civil Eng. 52, 63 (2008)

  21. 21

    W. Nitsche, C. Dobriloff, Imaging Measurement Methods for Flow Analysis: Results of the DFG Priority Programme 1147 ``Imaging Measurement Methods for Flow Analysis'' 2003-2009, Vol. 106 (Springer Science & Business Media, 2009)

  22. 22

    Y.-C. Lei, W.-H. Tien, J. Duncan, M. Paul, N. Ponchaut, C. Mouton, D. Dabiri, T. Rösgen, J. Hove, Exp. Fluids 53, 1251 (2012)

  23. 23

    C. Jiang, Z. Dong, X. Wang, J. Arid Land 9, 727 (2017)

  24. 24

    C. Veje, D.W. Howell, R. Behringer, Phys. Rev. E 59, 739 (1999)

  25. 25

    B. Utter, R.P. Behringer, Phys. Rev. E 69, 031308 (2004)

  26. 26

    V. Jasti, C.F. Higgs III, Phys. Rev. E 78, 041306 (2008)

  27. 27

    D. Fenistein, M. van Hecke, Nature 425, 256 (2003)

  28. 28

    T. Unger, J. Török, J. Kertész, D.E. Wolf, Phys. Rev. Lett. 92, 214301 (2004)

  29. 29

    A. Ries, D.E. Wolf, T. Unger, Phys. Rev. E 76, 051301 (2007)

  30. 30

    J.A. Dijksman, Granular Media: Flow & Agitations, PhD Thesis (Granular and Disordered Media, Leiden Institute of Physics, Faculty of Science, Leiden University, 2009)

  31. 31

    J.A. Dijksman, M. van Hecke, Soft Matter 6, 2901 (2010)

  32. 32

    X. Cheng, J.B. Lechman, A. Fernandez-Barbero, G.S. Grest, H.M. Jaeger, G.S. Karczmar, M.E. Möbius, S.R. Nagel, Phys. Rev. Lett. 96, 38001 (2006)

  33. 33

    F. Spaepen, Acta Metall. 25, 407 (1977)

  34. 34

    J. Li, F. Spaepen, T. Hufnagel, Philos. Mag. A 82, 2623 (2002)

  35. 35

    L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 96, 138302 (2006)

  36. 36

    P. Chaudhuri, L. Berthier, L. Bocquet, Phys. Rev. E 85, 021503 (2012)

  37. 37

    J. Vermant, Curr. Opin. Colloid Interface Sci. 6, 489 (2001)

  38. 38

    R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005)

  39. 39

    P. Coussot, G. Ovarlez, Eur. Phys. J. E 33, 183 (2010)

  40. 40

    N. Estrada, A. Lizcano, A. Taboada, Phys. Rev. E 82, 011303 (2010)

  41. 41

    R. Mani, D. Kadau, D. Or, H.J. Herrmann, Phys. Rev. Lett. 109, 248001 (2012)

  42. 42

    R. Schwarze, A. Gladkyy, F. Uhlig, S. Luding, Granular Matter 15, 455 (2013)

  43. 43

    J. Yuan, Q. Zhang, B. Li, X. Zhao, Bull. Eng. Geol. Environ. 72, 107 (2013)

  44. 44

    A. Singh, V. Magnanimo, K. Saitoh, S. Luding, Phys. Rev. E 90, 022202 (2014)

  45. 45

    I. Goldhirsch, Granular Matter 12, 239 (2010)

  46. 46

    T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granular Matter 14, 289 (2012)

  47. 47

    A.R. Thornton, T. Weinhart, S. Luding, O. Bokhove, Int. J. Mod. Phys. C 23, 1240014 (2012)

  48. 48

    T. Weinhart, A.R. Thornton, S. Luding, O. Bokhove, Granular Matter 14, 531 (2012)

  49. 49

    T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Phys. Fluids 25, 070605 (2013)

  50. 50

    D.R. Tunuguntla, A.R. Thornton, T. Weinhart, Comput. Part. Mech. 3, 349 (2016)

  51. 51

    D.R. Tunuguntla, T. Weinhart, A.R. Thornton, in ALERT Doctoral School 2017: Discrete Element Modeling (2017) p. 181, ISBN 978-2-9542517-9-0

  52. 52

    D.R. Tunuguntla, T. Weinhart, A.R. Thornton, Comput. Part. Mech. 4, 387 (2017)

  53. 53

    T. Weinhart, D. Tunuguntla, M. van Schrojenstein-Lantman, A. van der Horn, I. Denissen, C. Windows-Yule, A. de Jong, A. Thornton, in International Conference on Discrete Element Methods (Springer, 2016) pp. 1353--1360

  54. 54

    T. Weinhart, D.R. Tunuguntla, M.P.V.S. Lantman, I.F. Denissen, C.R.W. Yule, H. Polman, J.M. Tsang, B. Jin, L. Orefice, K. Van Der Vaart, in V International Conference on Particle-Based Methods-Fundamentals and Applications, PARTICLES 2017 (International Center for Numerical Methods in Engineering, Barcelona, 2017)

  55. 55

    A.R. Thornton, D. Krijgsman, A. te Voortwis, V. Ogarko, S. Luding, R. Fransen, S. Gonzalez, O. Bokhove, O.I. Imole, T. Weinhart, in 6th International Conference on Discrete Element Methods and Related Computational Techniques, DEM6 (Colorado School of Mines, 2013)

  56. 56

    S. Roy, A. Singh, S. Luding, T. Weinhart, Comput. Part. Mech. 3, 449 (2016)

  57. 57

    S. Roy, S. Luding, T. Weinhart, New J. Phys. 19, 043014 (2017)

  58. 58

    S. Roy, S. Luding, T. Weinhart, Phys. Rev. E 98, 052906 (2018)

  59. 59

    Surface tension values of some common test liquids for surface energy analysis, http://www.surface-tension.de/

  60. 60

    T. Weigert, S. Ripperger, Part. Part. Syst. Charact. 16, 238 (1999)

  61. 61

    S. Roy, Hydrodynamic Theory of Wet Particle Systems, PhD Thesis (Multi-Scale Mechanics, Faculty of Engineering Technology, University of Twente, 2018)

  62. 62

    P. Schall, M. van Hecke, Annu. Rev. Fluid Mech. 42, 67 (2009)

  63. 63

    D. Fenistein, J.W. van de Meent, M. van Hecke, Phys. Rev. Lett. 92, 094301 (2004)

  64. 64

    P. Jop, Phys. Rev. E 77, 032301 (2008)

  65. 65

    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996)

  66. 66

    D. Blair, E. Dufrense, The matlab particle tracking code repository, http://site.physics.georgetown.edu/matlab/

  67. 67

    D. Umbach, K.N. Jones, IEEE Trans. Instrum. Meas. 52, 1881 (2003)

  68. 68

    P.R. Bevington, D.K. Robinson, J.M. Blair, A.J. Mallinckrodt, S. McKay, Comput. Phys. 7, 415 (1993)

  69. 69

    L.Y. Chang, N.S. Pollard, J. Biomech. 40, 1392 (2007)

  70. 70

    S. Luding, Part. Sci. Technol. 26, 33 (2008)

  71. 71

    J. Török, T. Unger, J. Kertész, D. Wolf, Phys. Rev. E 75, 011305 (2007)

  72. 72

    M. Depken, J.B. Lechman, M. van Hecke, W. van Saarloos, G.S. Grest, EPL 78, 58001 (2007)

  73. 73

    D.L. Henann, K. Kamrin, Proc. Natl. Acad. Sci. U.S.A. 110, 6730 (2013)

  74. 74

    F. Alonso-Marroquın, I. Vardoulakis, Powders and Grains 2005, Vol. 1 (Taylor and Francis Group, London, 2005) p. 701

  75. 75

    F. Alonso-Marroquin, S. Luding, H. Herrmann, I. Vardoulakis, Phys. Rev. E 71, 051304 (2005)

  76. 76

    F. Guillard, B. Marks, I. Einav, Sci. Rep. 7, 8155 (2017)

  77. 77

    G. Lian, C. Thornton, M.J. Adams, J. Colloid Interface Sci. 161, 138 (1993)

  78. 78

    S. Herminghaus, Adv. Phys. 54, 221 (2005)

  79. 79

    G. Ovarlez, S. Rodts, A. Ragouilliaux, P. Coussot, J. Goyon, A. Colin, Phys. Rev. E 78, 036307 (2008)

  80. 80

    S. Roy, S. Luding, W.K. Otter, A.R. Thornton, T. Weinhart, in preparation

  81. 81

    H. Shi, S. Roy, T. Weinhart, V. Magnanimo, S. Luding, submitted to Granular Matter (2018)

Download references

Author information

Correspondence to Sudeshna Roy.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Scheper, B.J., Polman, H. et al. Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness. Eur. Phys. J. E 42, 14 (2019). https://doi.org/10.1140/epje/i2019-11778-x

Download citation

Keywords

  • Topical issue: Flowing Matter, Problems and Applications