Skip to main content
Log in

Rheology of weakly wetted granular materials: a comparison of experimental and numerical data

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Shear cell simulations and experiments of weakly wetted particles (a few volume percent liquid binders) are compared, with the goal to understand their flow rheology. Application examples are cores for metal casting by core shooting made of sand and liquid binding materials. The experiments are carried out with a Couette-like rotating viscometer. The weakly wetted granular materials are made of quartz sand and small amounts of Newtonian liquids. For comparison, experiments on dry sand are also performed with a modified configuration of the viscometer. The numerical model involves spherical, monodisperse particles with contact forces and a simple liquid bridge model for individual capillary bridges between two particles. Different liquid content and properties lead to different flow rheology when measuring the shear stress-strain relations. In the experiments of the weakly wetted granular material, the apparent shear viscosity \(\eta _g\) scales inversely proportional to the inertial number \(I\), for all shear rates. On the contrary, in the dry case, an intermediate scaling regime inversely quadratic in \(I\) is observed for moderate shear rates. In the simulations, both scaling regimes are found for dry and wet granular material as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  2. Nakagawa, M., Luding, S.: Powders and grains 2009. AIP Conference Proceedings, vol. 1145, American institute of physics (2009)

  3. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

    Article  Google Scholar 

  4. van der Hoef, M.A., van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann. Rev. Fluid Mech. 40, 4770 (2008)

    Google Scholar 

  5. Kafui, D.K., Johnson, S., Thornton, C., Seville, J.P.K.: Parallelization of a Lagrangian–Eulerian DEM/CFD code for application to fluidized beds. Powder Tech. 207, 270–278 (2011)

    Article  Google Scholar 

  6. Voigtmann, T.: Yield stresses and flow curves in metallic glass formers and granular systems. Eur. Phys. J. E 34, 106 (2011)

    Article  Google Scholar 

  7. Moorcroft, R.L., Cates, M.E., Fielding, S.M.: Age-dependent transient shear banding in soft glasses. Phys. Rev. Lett. 106, 055502 (2011)

    Article  ADS  Google Scholar 

  8. Mani, R., Kadau, D., Herrmann, H.J.: Fluid depletion in shear bands. Phys. Rev. Lett. 109, 248001 (2012)

    Article  ADS  Google Scholar 

  9. Harireche, O., Faramarzi, A., Alani, A.: A toroidal approximation of capillary forces in polydisperse granular assemblies. Granul. Matter (2013). doi:10.1007/s10035-013-0425-9

  10. Liu, P.Y., Yang, R.Y., Yu, A.B.: The effect of liquids on radial segregation of granular mixtures in rotating drums. Granul. Matter (2013). doi:10.1007/s10035-013-0392-1

  11. Hsiau, S.S., Liao, C.C., Tai, C.H., Wang, C.Y.: The dynamics of wet granular matter under a vertical vibration bed. Granul. Matter (2013). doi:10.1007/s10035-013-0412-1

  12. Zakerin, M., Kappl, M., Backus, E.H.G., Butt, H.J., Schonfeld, F.: Capillary forces between rigid spheres and elastic supports: the role of Young’s modulus and equilibrium vapor adsorption. Soft Matter 9, 4534–4543 (2013)

    Google Scholar 

  13. Lian, G., Thornton, C., Adams, M.J.: A theoretical study of the liquid bridge forces between two rigid spherical bodies. J. Colloid Interface Sci. 161, 138–147 (1993)

    Article  Google Scholar 

  14. Weigert, T., Rippberger, S.: Calculation of the liquid bridge volume and bulk saturation from the half-filling angle. Part. Part. Syst. Char. 16, 238–242 (1999)

    Article  Google Scholar 

  15. Willett, C.D., Adams, M.J., Johnson, S.A., Seville, J.P.K.: Capillary bridges between two spherical bodies. Langmuir 16, 9396–9405 (2000)

    Article  Google Scholar 

  16. Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54, 221–261 (2005)

    Article  ADS  Google Scholar 

  17. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  18. Goddard, J.D.: A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech. 568, 1–17 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Gabrieli, F., Lambert, P., Cola, S., Calvetti, F.: Micromechanical modelling of erosion due to evaporation in a partially wet granular slope. Int. J. Numer. Anal. Meth. Geomech. 36, 918–943 (2012)

    Article  Google Scholar 

  20. Hayman, N.W., Ducloue, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168, 2239–2257 (2011)

    Article  ADS  Google Scholar 

  21. Pietsch, W.: Agglomeration Processes. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  22. Guo, Y., Wu, C.Y., Thornton, C.: The effects of air and particle density difference on segregation of powder mixtures during die filling. Chem. Eng. Sci. 66, 661–673 (2011)

    Article  Google Scholar 

  23. Guo, Y., Wu, C.Y., Kafui, K.D., Thornton, C.: 3D DEM/CFD analysis of size-induced segregation during die filling. Powder Tech. 206, 177–188 (2011)

    Article  Google Scholar 

  24. Beeley, P.R.: Foundry Technology. Elsevier Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  25. Schwarze, R., Rudert, A., Tilch, W., Bast, J.: Rheological behavior of sand-binder mixtures measured by a coaxial cylinder rheometer. I. Foundry Res. 60(3), 2–6 (2008)

    Google Scholar 

  26. Liao, C.-C., Hsiau, S.-S.: Experimental analysis of dynamic properties in wet sheared granular matter. Powder Tech. 197, 222–229 (2010)

    Article  Google Scholar 

  27. Rudert, A., Schwarze, R., Tilch, W., Bast, J.: Computational fluid dynamics of the core shooting process. Foundry Trade J. Int. 185, 147–151 (2011)

    Google Scholar 

  28. Quarzwerke Frechen, Austria. www.quarzwerke.at/datenblaetter/Quarzsand_F32-F36.pdf

  29. Fenistein, D., van de Meent, J.W., van Hecke, M.: Universal and wide shear zones in granular bulk flow. Phys. Rev. Lett. 92, 094301 (2004)

    Article  ADS  Google Scholar 

  30. McCarthy, J.J.: Micro-modeling of cohesive mixing processes. Powder Technol. 138, 63–67 (2003)

    Article  Google Scholar 

  31. Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Segregation of cohesive granular materials during discharge from a rectangular hopper. Granul. Matter 12, 193–200 (2010)

    Google Scholar 

  32. Radl, S., Kalvoda, E., Glasser, B.J., Khinast, J.G.: Mixing characteristics of wet granular matter in a bladed mixer. Powder Technol. 200, 171–189 (2010)

    Google Scholar 

  33. Grima, P.W., Wypych, P.W.: Development and validation of calibration methods for discrete element modelling. Granul. Matter 13, 127–132 (2011)

    Article  Google Scholar 

  34. Luding, S.: The effect of friction on wide shear bands. Part. Sci. Technol. 26, 33–42 (2008)

    Article  ADS  Google Scholar 

  35. Luding, S.: Constitutive relations for the shear band evolution in granular matter under large strain. Particuology 6, 501–505 (2008)

    Article  Google Scholar 

  36. Luding, S., Alonso-Marroquin, F.: The critical-state yield stress (termination locus) of adhesive powders from a single numerical experiment. Granul. Matter 13, 109–119 (2011)

    Article  Google Scholar 

  37. Sadrekarimi, A., Olson, S.M.: A new ring shear device to measure the large displacement shearing behavior of sands. Geotech. Test. J. 32, 197–208 (2008)

    Google Scholar 

  38. Börzsönyi, T., Unger, T., Szabo, B., Wegner, S., Angenstein, F., Stannarius, R.: Reflection and exclusion of shear zones in inhomogeneous granular materials. Soft Matter 7, 8330–8336 (2011)

    Article  ADS  Google Scholar 

  39. Dijksman, J.A., Wortel, G.H., van Dellen, L.T.H., Dauchot, O., van Hecke, M.: Jamming, yielding, and rheology of weakly vibrated granular media. Phys. Rev. Lett. 107, 108303 (2011)

    Article  ADS  Google Scholar 

  40. Börzsönyi, T., Szabo, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302 (2012)

    Article  ADS  Google Scholar 

  41. Wang, X., Zhu, H.P., Yu, A.B.: Microdynamic analysis of solid flow in a shear cell. Granul. Matter 14, 411–421 (2012)

    Article  Google Scholar 

  42. Slotterback, S., Mailman, M., Ronaszegi, K., van Hecke, M., Girvan, M., Losert, W.: Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E 85, 021309 (2012)

    Article  ADS  Google Scholar 

  43. Luding, S.: Cohesive frictional powders: contact models for tension. Granul. Matter 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  44. Göncü, F., Duran, O., Luding, S.: Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres. Compt. Rend. Mec. 338, 570–586 (2010)

    Article  ADS  MATH  Google Scholar 

  45. Shaebani, M.R., Madadi, M., Luding, S., Wolf, D.E.: Influence of polydispersity on micromechanics of granular materials. Phys. Rev. E 85, 011301 (2012)

    Article  ADS  Google Scholar 

  46. Luding, S., Clément, E., Blumen, A., Rajchenbach, J., Duran, J.: Anomalous energy dissipation in molecular dynamics simulations of grains. Phys. Rev. E 50, 4113–4122 (1994)

    Article  ADS  Google Scholar 

  47. Otsuki, M., Hayakawa, H., Luding, S.: Behavior of pressure and viscosity at high densities for two-dimensional hard and soft granular materials. Prog. Theor. Phys. Suppl. 184, 110–133 (2010)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the ERASMUS program which allowed us to host FU during his Master study at the University of Twente. Helpful discussions with T. Weinhart, A. Singh, V. Magnanimo are appreciated. RS acknowledges the German Science Foundation (DFG) for funding parts of the work under Project No. SCHW 1168/6-1, and SL acknowledges the NWO/STW, VICI Grant 10828, and the DFG, project SPP1482 B12, for partial financial support. Finally, we acknowledge the constructive criticism of the referees of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Luding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarze, R., Gladkyy, A., Uhlig, F. et al. Rheology of weakly wetted granular materials: a comparison of experimental and numerical data. Granular Matter 15, 455–465 (2013). https://doi.org/10.1007/s10035-013-0430-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0430-z

Keywords

Navigation