Mesoscopic models for DNA stretching under force: New results and comparison with experiments

  • Manoel Manghi
  • Nicolas Destainville
  • John Palmeri
Regular Article


Single-molecule experiments on double-stranded B-DNA stretching have revealed one or two structural transitions, when increasing the external force. They are characterized by a sudden increase of DNA contour length and a decrease of the bending rigidity. The nature and the critical forces of these transitions depend on DNA base sequence, loading rate, salt conditions and temperature. It has been proposed that the first transition, at forces of 60–80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in single-stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions these two transitions can overlap, for instance for poly(dA-dT). In an attempt to propose a coherent picture compatible with this variety of experimental observations, we derive an analytical formula using a coupled discrete worm-like chain-Ising model. Our model takes into account bending rigidity, discreteness of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing a connection with previous fitting parameter values for denaturation profiles. Our results are summarized as follows: i) ssDNA is fitted, using an analytical formula, over a nano-Newton range with only three free parameters, the contour length, the bending modulus and the monomer size; ii) a surprisingly good fit on this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase length; iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions; iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and for long DNAs, which is in excellent agreement with exact transfer matrix calculations; v) this formula fits perfectly well poly(dG-dC) and λ-DNA force-extension curves with consistent parameter values; vi) a coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the B to S one, emerges. This relatively simple model might allow one to further study quantitatively the influence of salt concentration and base-pairing interactions on DNA force-induced transitions.


Living systems: Biological Matter 


  1. 1.
    K.C. Neuman, A. Nagy, Nat. Methods 5, 491 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999).CrossRefGoogle Scholar
  3. 3.
    B. Maier, U. Seifert, J.O. Rädler, Europhys. Lett. 60, 622 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    D.A. Schafer, J. Gelles, M.P. Sheetz, R. Landick, Nature 352, 444 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, F. Caron, Science 271, 792 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    C. Bustamante, Z. Bryant, S.B. Smith, Nature 421, 423 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    M.T. Woodside, C. Garcia-Garcia, S.M. Block, Curr. Opin. Chem. Biol. 12, 640 (2008).CrossRefGoogle Scholar
  9. 9.
    H. Clausen-Schaumann, M. Rief, C. Tolksdorf, H.E. Gaub, Biophys. J. 78, 1997 (2000).CrossRefGoogle Scholar
  10. 10.
    I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 882 (2001).CrossRefGoogle Scholar
  11. 11.
    J. van Mameren et al., Proc. Natl. Acad. Sci. U.S.A. 106, 18231 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    M.C. Williams, I. Rouzina, Curr. Opin. Struct. Biol. 12, 330 (2002).CrossRefGoogle Scholar
  13. 13.
    M.C. Williams, I. Rouzina, M. McCauley, Proc. Natl. Acad. Sci. U.S.A. 106, 18047 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    T.R. Einert, D.B. Staple, H.-J. Kreuzer, R.R. Netz, Biophys. J. 99, 578 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    K.R. Chaurasiya, T. Paramanathan, M.J. McCauley, M.C. Williams, Phys. Life Rev. 7, 299 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    C. Prévost, M. Takahashi, R. Lavery, Chem. Phys. Chem. 10, 1399 (2009).CrossRefGoogle Scholar
  17. 17.
    C.H. Albrecht, G. Neuert, R.A. Lugmaier, H.E. Gaub, Biophys. J. 94, 4766 (2008).CrossRefGoogle Scholar
  18. 18.
    H. Fu, H. Chen, J.F. Marko, J. Yan, Nucleic Acids Res. 38, 5594 (2010).CrossRefGoogle Scholar
  19. 19.
    H. Fu, H. Chen, X. Zhang, Y. Qu, J.F. Marko, J. Yan, Nucleic Acids Res. 39, 3473 (2011).CrossRefGoogle Scholar
  20. 20.
    X. Zhang, H. Chen, H. Fu, P.S. Doyle, J. Yan, Proc. Natl. Acad. Sci. U.S.A. 109, 8103 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    S. Cocco, J. Yan, J.-F. Léger, D. Chatenay, J.F. Marko, Phys. Rev. E 70, 18 (2004).CrossRefGoogle Scholar
  22. 22.
    M.N. Dessinges, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, V. Croquette, Phys. Rev. Lett. 89, 248102 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    L. Livadaru, R.R. Netz, H.J. Kreuzer, Macromolecules 36, 3732 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    T. Hügel, M. Rief, M. Seitz, H.E. Gaub, R.R. Netz, Phys. Rev. Lett. 94, 048301 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    C. Storm, P.C. Nelson, Europhys. Lett. 62, 760 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    C. Storm, P.C. Nelson, Phys. Rev. E 67, 051906 (2003).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    C. Ke, M. Humeniuk, H. S-Gracz, P.E. Marszalek, Phys. Rev. Lett. 99, 018302 (2007).ADSCrossRefGoogle Scholar
  28. 28.
    G. Mishra, D. Giri, S. Kumar, Phys. Rev. E 79, 031930 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    P. Cizeau, J.-L. Viovy, Biopolymers 42, 383 (1997).CrossRefGoogle Scholar
  30. 30.
    A. Ahsan, J. Rudnick, R. Bruinsma, Biophys. J. 74, 132 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    A. Hanke, M.G. Ochoa, R. Metzler, Phys. Rev. Lett. 100, 018106 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    J. Rudnick, T. Kuriabova, Phys. Rev. E 77, 051903 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    J. Palmeri, M. Manghi, N. Destainville, Phys. Rev. Lett. 99, 088103 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    J. Palmeri, M. Manghi, N. Destainville, Phys. Rev. E 77, 011913 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    S.J. Rahi, M.P. Hertzberg, M. Kardar, Phys. Rev. E 78, 05190 (2008).CrossRefGoogle Scholar
  37. 37.
    J. Kierfeld, O. Niamploy, V. Sa-yakanit, R. Lipowsky, Eur. Phys. J. E 14, 17 (2004).CrossRefGoogle Scholar
  38. 38.
    A. Rosa, T.X. Hoang, D. Marenduzzo, A. Maritan, Macromolecules 36, 10095 (2003).ADSCrossRefGoogle Scholar
  39. 39.
    A. Rosa, T.X. Hoang, D. Marenduzzo, A. Maritan, Biophys. Chem. 115, 251 (2005).CrossRefGoogle Scholar
  40. 40.
    P. Pincus, Macromolecules 9, 386 (1976).ADSCrossRefGoogle Scholar
  41. 41.
    J.-F. Joanny, Eur. Phys. J. B 9, 117 (1999).ADSCrossRefGoogle Scholar
  42. 42.
    M. Manghi, R.R. Netz, Eur. Phys. J. E 14, 67 (2004).CrossRefGoogle Scholar
  43. 43.
    R.R. Netz, Macromolecules 34, 7522 (2001).ADSCrossRefGoogle Scholar
  44. 44.
    P.J. Flory, Statistical Mechanics of Chain Macromolecules (Hanser, Munich, 1989).Google Scholar
  45. 45.
    M. Fixman, J. Kovac, J. Chem. Phys. 58, 1564 (1973).ADSCrossRefGoogle Scholar
  46. 46.
    F. Hanke, A. Serr, H.J. Kreuzer, R.R. Netz, EPL 92, 53001 (2010).ADSCrossRefGoogle Scholar
  47. 47.
    M. Blume, P. Heller, N.A. Lurie, Phys. Rev. B 11, 4483 (1975).ADSCrossRefGoogle Scholar
  48. 48.
    G.S. Joyce, Phys. Rev. 155, 478 (1967).ADSCrossRefGoogle Scholar
  49. 49.
    H. Zhang, J.F. Marko, Phys. Rev. E 82, 051906 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    J. Yan, J.F. Marko, Phys. Rev. Lett. 93, 108108 (2004).ADSCrossRefGoogle Scholar
  51. 51.
    J. Yan, R. Kawamura, J.F. Marko, Phys. Rev. E 71, 061905 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    M. Manghi, J. Palmeri, N. Destainville, J. Phys.: Condens. Matter 21, 034104 (2009).CrossRefGoogle Scholar
  53. 53.
    D. Poland, H.R. Scheraga, Theory of helix coil transition in biopolymers (New York, Academic Press, 1970).Google Scholar
  54. 54.
    R.M. Wartell, A.S. Benight, Phys. Rep. 126, 67 (1985).ADSCrossRefGoogle Scholar
  55. 55.
    H.S. Koo, D.M. Crothers, Proc. Natl. Acad. Sci. U.S.A. 85, 1763 (1988).ADSCrossRefGoogle Scholar
  56. 56.
    I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 894 (2001).CrossRefGoogle Scholar
  57. 57.
    O. Gotoh, Adv. Biophys. 16, 1 (1983).CrossRefGoogle Scholar
  58. 58.
    J.-F. Léger, G. Romano, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J.F. Marko, Phys. Rev. Lett. 83, 1066 (1999).ADSCrossRefGoogle Scholar
  59. 59.
    C.J. Benham, Proc. Natl. Acad. Sci. U.S.A. 76, 3870 (1979).ADSCrossRefGoogle Scholar
  60. 60.
    J.-H. Jeon, J. Adamcik, G. Dietler, R. Metzler, Phys. Rev. Lett. 105, 208101 (2010).ADSCrossRefGoogle Scholar
  61. 61.
    S. Whitelam, S. Pronk, P.L. Geissler, Biophys. J. 94, 2452 (2008).CrossRefGoogle Scholar
  62. 62.
    A. Ferrantini, E. Carlon, J. Stat. Mech.: Theor. Exp., P02020 (2009).Google Scholar
  63. 63.
    A. Dasanna, N. Destainville, J. Palmeri, M. Manghi, EPL 98, 38002 (2012).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manoel Manghi
    • 1
    • 2
  • Nicolas Destainville
    • 1
    • 2
  • John Palmeri
    • 1
    • 2
  1. 1.Laboratoire de Physique Théorique (IRSAMC)Université de Toulouse; UPSToulouseFrance
  2. 2.CNRS; LPT (IRSAMC)ToulouseFrance

Personalised recommendations