Skip to main content
Log in

Non-linear Hamiltonian models for DNA

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Nucleic acids’ physical properties have been investigated by theoretical methods based both on fully atomistic representations and on coarse-grained models, e.g., the worm-like-chain, taken from polymer physics. In this review article, I discuss an intermediate (mesoscopic) approach and show how to build a three-dimensional Hamiltonian model which accounts for the main interactions responsible for the stability of the helical molecules. While the 3D mesoscopic model yields a sufficiently detailed description of the helix at the level of the base pair, it also allows one to predict the thermodynamical and structural properties of molecules in solution. Relying on the idea that the base pair fluctuations can be conceived as trajectories, I have built over the past years a computational method based on the time-dependent path integral formalism to derive the partition function. While the main features of the method are presented, I focus here in particular on a newly developed statistical method to set the maximum amplitude of the base pair fluctuations, a key parameter of the theory. Some applications to the calculation of DNA flexibility properties are discussed together with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The PB model is usually represented by a ladder as in Fig. 2 of ref. Peyrard et al. (2008) where the bases are depicted as extended objects. In fact, the Hamiltonian assumes a point-like description for the bases as in Fig. 1.

  2. The coefficients \(a_m\) should not be confused with the inverse length \(\bar{a}_n\) of the site-dependent Morse potential.

  3. In principle, the Fourier coefficients in Eq. (11) are integrated on an even domain. However, too negative \(a_m\)’s are discarded due to the physical condition associated to the hard core of the one-particle potential. The latter is tuned by the parameter which regulates the range of the Morse potential (see Section 2). The asymmetry in the choice of \(a_m\)’s included in the computation explains why \(P_j(R_0,\, 0)\) may get slightly larger than 1/2. Hence, the approximation sign is used in the text.

References

  • Apostolaki A, Kalosakas G (2011) Targets of DNA-binding proteins in bacterial promoter regions present enhanced probabilities for spontaneous thermal openings. Phys Biol 8:026006

    Article  PubMed  Google Scholar 

  • Barbi M, Cocco S, Peyrard M (1999) Helicoidal model for DNA opening. Phys Lett A 253:358

    Article  CAS  Google Scholar 

  • Barbi M, Cocco S, Peyrard M, Ruffo S (1999) A twist opening model for DNA. J Biol Phys 24:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates AD, Maxwell A (2009) DNA topology. Oxford University Press, Oxford

    Google Scholar 

  • Calladine CR, Drew HR (1992) Understanding DNA. Academic Press, San Diego

    Google Scholar 

  • Campa A, Giansanti A (1998) Experimental tests of the Peyrard-Bishop model applied to the melting of very short DNA chains. Phys Rev E 58:3585–3588

    Article  CAS  Google Scholar 

  • Chhetri KB, Dasgupta C, Maiti PB (2022) Diameter dependent melting and softening of dsDNA under cylindrical confinement. Front Chem 10:879746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi CH, Kalosakas G, Rasmussen KØ, Hiromura M, Bishop AR, Usheva A (2004) DNA dynamically directs its own transcription initiation. Nucl Acid Res 32:1584–1590

    Article  CAS  Google Scholar 

  • Cule D, Hwa T (1997) Denaturation of heterogeneous DNA. Phys Rev Lett 79:2375–2378

    Article  CAS  Google Scholar 

  • Dauxois T, Peyrard M, Bishop AR (1993) Entropy driven DNA denaturation. Phys Rev E 47:R44–R47

    Article  CAS  Google Scholar 

  • Depew RE, Wang JC (1975) Conformational fluctuations of DNA helix. Proc Natl Acad Sci USA 72:4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drukker K, Wu G, Schatz GC (2001) Model simulations of DNA denaturation dynamics. J Chem Phys 114:579–590

    Article  CAS  Google Scholar 

  • Duguet M (1993) The helical repeat of DNA at high temperature. Nucl Acids Res 21:463–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englander SW, Kallenbach NR, Heeger AJ, Krumhansl JA, Litwin A (1980) Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc Natl Acad Sci USA 77:7222–7226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. Mc Graw-Hill, New York

    Google Scholar 

  • Gresham D, Dunham MJ, Botstein D (2008) Comparing whole genomes using DNA microarrays. Nat Rev 9:291

    Article  CAS  Google Scholar 

  • Guéron M, Leroy J-L (1985) Methods in enzymology 261. Academic Press, San Diego, USA

    Google Scholar 

  • Hillebrand M, Kalosakas G, Bishop AR, Skokos Ch (2021) Bubble lifetimes in DNA gene promoters and their mutations affecting transcription. J Chem Phys 155:095101

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand M, Kalosakas G, Skokos Ch, Bishop AR (2020) Distributions of bubble lifetimes and bubble lengths in DNA. Phys Rev E 102:062114

    Article  CAS  PubMed  Google Scholar 

  • Joshi H, Dwaraknath A, Maiti PK (2015) Structure, stability and elasticity of DNA nanotubes. Phys Chem Chem Phys 17:1424–1434

    Article  CAS  PubMed  Google Scholar 

  • King M-C, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107

    Article  CAS  PubMed  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics. Pergamon Press, Oxford, UK

    Google Scholar 

  • Landau LD, Lifshitz EM (2000) Quantum mechanics, 3rd edn. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  • Le TT, Kim HD (2013) Measuring shape-dependent looping probability of DNA. Biophys J 104:2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TT, Kim HD (2014) Probing the elastic limit of DNA bending. Nucl Acids Res 42:10786–10794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macedo DX, Guedes I, Albuquerque EL (2014) Thermal properties of a DNA denaturation with solvent interaction. Phys A 404:234–241

    Article  CAS  Google Scholar 

  • Majumdar SN (2005) Brownian functionals in Physics and Computer Science. Curr Sci 89:2076

    CAS  Google Scholar 

  • Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Prot 2:59

    Article  CAS  Google Scholar 

  • Oliveira LM, Long AS, Brown T, Fox KR, Weber G (2020) Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem Sci 11:8273–8287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43:3537–3554

    Article  CAS  PubMed  Google Scholar 

  • Padinhateeri R, Menon GI (2013) Stretching and bending fluctuations of short DNA molecules. Biophys J 104:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyrard M, Bishop AR (1989) Statistical mechanics of a nonlinear model for DNA denaturation. Phys Rev Lett 62:2755–2758

    Article  CAS  PubMed  Google Scholar 

  • Peyrard M, Cuesta-López S, Angelov D (2009) Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules. J Phys: Condens Matter 21:034103

    CAS  Google Scholar 

  • Peyrard M, Cuesta-López S, James G (2008) Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity 21:T91–T100

    Article  Google Scholar 

  • Poland D, Scheraga H (1966) Phase transitions in one dimension and the Helix-Coil transition in polyamino acids. J Chem Phys 45:1456

    Article  CAS  PubMed  Google Scholar 

  • Prohofsky EW (1988) Solitons hiding in DNA and their possible significance in RNA transcription. Phys Rev A 38:1538–1541

    Article  CAS  Google Scholar 

  • Romero-Enrique JM, de los Santos F, Muñoz MA (2010) Renormalisation group determination of the order of the DNA denaturation transition. EPL - Europhys Lett 89:40011

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1975) Enzymatic amplification of P-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350

    Article  Google Scholar 

  • SantaLucia J Jr, Hicks D (2004) The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 33:415

    Article  CAS  PubMed  Google Scholar 

  • Scalapino DJ, Sears M, Ferrel RA (1972) Statistical mechanics of one-dimensional Ginzburg-Landau fields. Phys Rev B 6:3409

    Article  CAS  Google Scholar 

  • Schulman LS (1981) Techniques and applications of path integration. Wiley, New York

    Book  Google Scholar 

  • Shimada J, Yamakawa H (1984) Ring-closure probabilities for twisted Wormlike chains. Application to DNA. Macromolecules 17:689–698

    Article  CAS  Google Scholar 

  • Singh A, Modi T, Singh N (2016) Opening of DNA chain due to force applied on different locations. Phys Rev E 94:032410

    Article  PubMed  Google Scholar 

  • Singh A, Singh N (2015) Effect of salt concentration on the stability of heterogeneous DNA. Phys A 419:328–334

    Article  CAS  Google Scholar 

  • Srivastava S, Singh N (2011) The probability analysis of opening of DNA. J Chem Phys 134:115102

    Article  PubMed  Google Scholar 

  • Strick T, Allemand J-F, Croquette V, Bensimon D (2000) Twisting and stretching single DNA molecules. Prog Biophys Mol Biol 74:115–140

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman A, Zen FP, Alatas H, Handoko LT (2012) The thermal denaturation of the Peyrard-Bishop model with an external potential. Phys Scr 86:015802

    Article  Google Scholar 

  • Vafabakhsh R, Ha T (2012) Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337:1097–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eijck L, Merzel F, Rols S, Ollivier J, Forsyth VT, Johnson MR (2011) Direct determination of the base-pair force constant of DNA from the acoustic phonon dispersion of the double helix. Phys Rev Lett 107:088102

    Article  PubMed  Google Scholar 

  • van Hove L (1950) Sur L’ intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension. Physica 16:137–143

    Article  Google Scholar 

  • Wang JC (1979) Helical repeat of DNA in solution. Proc Natl Acad Sci USA 76:200–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wartell RM, Benight AS (1985) Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys Rep 126:67–107

    Article  CAS  Google Scholar 

  • Yakushevich LV (1994) Nonlinear DNA dynamics: hierarchy of the models. Physica D 79:77–86

    Article  CAS  Google Scholar 

  • Yamakawa H, Stockmayer WH (1972) Statistical mechanics of wormlike chains. II. Excluded volume effects. J Chem Phys 57:2843

    Article  CAS  Google Scholar 

  • Zhang F, Collins MA (1995) Model simulations of DNA dynamics. Phys Rev E 52:4217

    Article  CAS  Google Scholar 

  • Zhang YL, Zheng WM, Liu JX, Chen YZ (1997) Theory of DNA melting based on the Peyrard-Bishop model. Phys Rev E 56:7100–7115

    Article  CAS  Google Scholar 

  • Zoli M (1997) c-axis resistivity in high \(T_c\) superconductors. Phys Rev B 56:111

    Article  CAS  Google Scholar 

  • Zoli M (2004) Phonon thermodynamics versus electron-phonon models. Phys Rev B 70:184301

    Article  Google Scholar 

  • Zoli M (2005) Path integral of the two dimensional Su-Schrieffer-Heeger model. Phys Rev B 71:205111

    Article  Google Scholar 

  • Zoli M (2007) Finite size effects in bistable \(\phi ^4\) models. J Math Phys 48:012111

    Article  Google Scholar 

  • Zoli M (2009) Path integral method for DNA denaturation. Phys Rev E 79:041927

    Article  Google Scholar 

  • Zoli M (2010) Denaturation patterns in heterogeneous DNA. Phys Rev E 81:051910

    Article  Google Scholar 

  • Zoli M (2011a) Stacking interactions in denaturation of DNA fragments. Eur Phys J E 34:68

    Article  CAS  PubMed  Google Scholar 

  • Zoli M (2011b) Thermodynamics of twisted DNA with solvent interaction. J Chem Phys 135:115101

    Article  PubMed  Google Scholar 

  • Zoli M (2012) Anharmonic stacking in supercoiled DNA. J Phys: Condens Matter 24:195103

    Google Scholar 

  • Zoli M (2013) Helix untwisting and bubble formation in circular DNA. J Chem Phys 138:205103

    Article  PubMed  Google Scholar 

  • Zoli M (2014a) Twisting and bending stress in DNA minicircles. Soft Matter 10:4304–4311

    Article  CAS  PubMed  Google Scholar 

  • Zoli M (2014b) Entropic penalties in circular DNA assembly. J Chem Phys 141:174112

    Article  PubMed  Google Scholar 

  • Zoli M (2014c) Twist versus nonlinear stacking in short DNA molecules. J Theor Biol 354:95–104

    Article  CAS  PubMed  Google Scholar 

  • Zoli M (2016a) Flexibility of short DNA helices under mechanical stretching. Phys Chem Chem Phys 18:17666

    Article  CAS  PubMed  Google Scholar 

  • Zoli M (2016b) J- factors of short DNA molecules. J Chem Phys 144:214104

    Article  PubMed  Google Scholar 

  • Zoli M (2017) Twist-stretch profiles of DNA chains. J Phys: Condens Matter 29:225101

    Google Scholar 

  • Zoli M (2018a) Twisting short dsDNA with applied tension. Phys A 492:903–915

    Article  CAS  Google Scholar 

  • Zoli M (2018b) Short DNA persistence length in a mesoscopic helical model. EPL - Europhys Lett 123:68003

    Article  Google Scholar 

  • Zoli M (2018c) End-to-end distance and contour length distribution functions of DNA helices. J Chem Phys 148:214902

    Article  PubMed  Google Scholar 

  • Zoli M (2019) DNA size in confined environments. Phys Chem Chem Phys 21:12566

    Article  CAS  PubMed  Google Scholar 

  • Zoli M (2020a) First-passage probability: a test for DNA Hamiltonian parameters. Phys Chem Chem Phys 22:26901–26909

    Article  CAS  PubMed  Google Scholar 

  • Zoli M (2020b) Stretching DNA in hard-wall potential channels. EPL - Europhys Lett 130:28002

    Article  CAS  Google Scholar 

  • Zoli M (2021) Base pair fluctuations in helical models for nucleic acids. J Chem Phys 154:194102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zoli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoli, M. Non-linear Hamiltonian models for DNA. Eur Biophys J 51, 431–447 (2022). https://doi.org/10.1007/s00249-022-01614-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-022-01614-z

Keywords

Navigation