Skip to main content
Log in

Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alderborn, in Pharmaceutics The Science of Dosage Form Design, edited by M.E. Aulton, second edition (Churchill Livingstone, New York, 2002) pp. 397-440.

  2. B.C. Hancock, C.R. Dalton, S.D. Clas, Int. J. Pharm. 228, 139 (2001).

    Article  PubMed  Google Scholar 

  3. S. Malamataris, J.E. Rees, Int. J. Pharm. 92, 123 (1993).

    Article  Google Scholar 

  4. G.W. Radebaugh, S.R. Babu, J.N. Bondi, Int. J. Pharm. 57, 95 (1989).

    Article  Google Scholar 

  5. D.V. Moe, E.G. Rippie, J. Pharm. Sci. 86, 26 (1997).

    Article  PubMed  Google Scholar 

  6. R.S. Lakes, Rev. Sci. Instrum. 75, 797 (2004).

    Article  Google Scholar 

  7. S. Mousavi, K. Welch, U. Valdek, B. Lundberg, Int. J. Impact Eng. 31, 1133 (2005).

    Article  Google Scholar 

  8. G. Fantozzi, Mechanical Spectroscopy Q-1 2001, Vol. 366-3 (Trans Tech Publications, Inc., Switzerland, 2001) pp. 3-31.

  9. C. Zener, J. Appl. Phys. 18, 1022 (1947).

    Article  Google Scholar 

  10. G.K. Bolhuis, Z.T. Chowhan, in Pharmaceutical Powder Compaction Technology, edited by G. Alderborn, C. Nyström, Vol. 71 (Marcel Dekker, Inc., New York, 1996) pp. 419-500.

  11. P.N. Davies, J.M. Newton, in Pharmaceutical Powder Compaction Technology, edited by G. Alderborn, C. Nyström, Vol. 71 (Marcel Dekker, Inc., New York, 1996) pp. 165-191.

  12. M.M. Al-Mousawi, S.R. Reid, W.F. Deans, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 211, 273 (1997).

    Article  Google Scholar 

  13. J. San Juan, Mechanical Spectroscopy Q-1 2001, Vol. 366-3 (Trans Tech Publications, Inc., Switzerland, 2001) pp. 32-73.

  14. S. Etienne, S. Elkoun, L. David, L.B. Magalas, Mechanical Spectroscopy Ii, Vol. 89 (Trans Tech Publications, Inc., Switzerland, 2003) pp. 31-66.

  15. S. Havriliak, S. Negami, Polymer 8, 161 (1967).

    Article  Google Scholar 

  16. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, 1983).

  17. S. Havriliak jr., S.J. Havriliak, Dielectric and Mechanical Relaxation in Materials (Hanser Publishers, Munich, 1997).

  18. R.M. Hill, A.K. Jonscher, Contemp. Phys. 24, 75 (1983).

    Google Scholar 

  19. R.M. Hill, J. Mater. Sci. 17, 3630 (1982).

    Article  Google Scholar 

  20. J. Einfeldt, D. Meissner, A. Kwasniewski, Cellulose 11, 137 (2004).

    Article  Google Scholar 

  21. J. Einfeldt, D. Meissner, A. Kwasniewski, Progr. Polym. Sci. 26, 1419 (2001).

    Article  Google Scholar 

  22. M. Naoki, S. Katahira, J. Phys. Chem. 95, 431 (1991).

    Article  Google Scholar 

  23. A. Faivre, G. Niquet, M. Maglione, J. Fornazero, J.F. Jal, L. David, Eur. Phys. J. B 10, 277 (1999).

    Article  Google Scholar 

  24. R. Nozaki, D. Suzuki, S. Ozawa, Y. Shiozaki, J. Non-Cryst. Solids 235, 393 (1998).

    Article  Google Scholar 

  25. E. Shotton, D. Ganderton, J. Pharm. Pharmacol. 13 (Suppl.), 144 (1961).

  26. H. Olsson, S. Mattsson, C. Nyström, Int. J. Pharm. 171, 31 (1998).

    Article  Google Scholar 

  27. S. Mattsson, C. Nyström, Eur. J. Pharm. Sci. 10, 53 (2000).

    Article  PubMed  Google Scholar 

  28. H. Rumpf, in Agglomeration, edited by W.A. Knepper (Interscience Publishers, New York, 1962) pp. 379-418.

  29. C. Nyström, P.G. Karehill, in Pharmaceutical Powder Compaction Technology, edited by G. Alderborn, C. Nyström, Vol. 71 (Marcel Dekker, Inc., New York, 1996) pp. 17-53.

  30. H. Olsson, C. Nyström, Pharm. Res. 18, 203 (2001).

    Article  PubMed  Google Scholar 

  31. Y.S. Lee, R. Poynter, F. Podczeck, J.M. Newton, AAPS PharmSciTech 1, E21 (2000).

  32. T.M. Tsai, J.S. Wu, H.O. Ho, M.T. Sheu, J. Pharm. Sci. 87, 117 (1998).

    Article  PubMed  Google Scholar 

  33. J.D. Ferry, Viscoelastic Properties of Polymers, third edition (Johy Wiley & Sons, Inc., New York, 1980).

  34. M. Strømme, A. Mihranyan, R. Ek, G.A. Niklasson, J. Phys. Chem. B 107, 14378 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, K., Mousavi, S., Lundberg, B. et al. Viscoelastic characterization of compacted pharmaceutical excipient materials by analysis of frequency-dependent mechanical relaxation processes. Eur. Phys. J. E 18, 105–112 (2005). https://doi.org/10.1140/epje/i2005-10032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10032-8

PACS.

Navigation