Skip to main content
Log in

Stationary cell size distributions and mean protein chain length distributions of Archaea, Bacteria and Eukaryotes described with an increment model in terms of irreversible thermodynamics

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In terms of an increment model irreversible thermodynamics allows to formulate general relations of stationary cell size distributions observed in growing colonies. The treatment is based on the following key postulates: i) The growth dynamics covers a broad spectrum of fast and slow processes. ii) Slow processes are considered to install structural patterns that operate in short periods as temporary stationary states of reference in the sense of irreversible thermodynamics. iii) Distortion during growth is balanced out via the many fast processes until an optimized stationary state is achieved. The relation deduced identifies the numerous different stationary patterns as equivalents, predicting that they should fall on one master curve. Stationary cell size distributions of different cell types, like Hyperphilic archaea, E. coli (Prokaryotes) and S. cerevisiae (Eukaryotes), altogether taken from the literature, are in fact consistently described. As demanded by the model they agree together with the same master curve. Considering the “protein factories” as subsystems of cells the mean protein chain length distributions deduced from completely sequenced genomes should be optimized. In fact, the mean course can be described with analogous relations as used above. Moreover, the master curve fits well to the patterns of different species of Archaea, Bacteria and Eukaryotes. General consequences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Service, Science 284, 80 (1999).

    Article  Google Scholar 

  2. S.A. Kooijman, L.M. Muller, E.B. Stouthamer, Antonie van Leeuwenhoek 60, 159 (1991).

    Article  PubMed  Google Scholar 

  3. F.W. Schlote, Arch. Microbiol. 40, 283 (1961).

    Google Scholar 

  4. M. Schaechter, O. Maaloe, N. Kjeldgaard, J. Gen. Microbiol. 19, 592 (1958).

    PubMed  Google Scholar 

  5. N. Kjeldgaard, O. Maaloe, M. Schaechter, J. Gen. Microbiol. 19, 607 (1958).

    PubMed  Google Scholar 

  6. I. Stewart, Nature 413, 686 (2001).

    Article  PubMed  Google Scholar 

  7. L. von Bertallanffy, Science 13, 23 (1950).

    Google Scholar 

  8. H. Schindler, V.P. Pastushenko, U.M. Titulaer, Eur. Biophys. J. 27, 219 (1998).

    Article  Google Scholar 

  9. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology (Garland, New York, London, 1997) p. 26.

  10. M.F. Perutz, Nature 161, 204 (1948).

    Google Scholar 

  11. H.G. Kilian, R. Kemkemer, H. Gruler, Colloid Polym. Sci. 280, 1151 (2002).

    Article  Google Scholar 

  12. R. Haase, Thermodynamik der Irreversiblen Prozesse (Steinkopf, Darmstadt 1963) p. 118.

  13. H.G. Kilian, M. Koepf, V.I. Vettegren, Prog. Colloid Polym. Sci. 117, 172 (2001).

    Google Scholar 

  14. H.G. Kilian, S. Bronnikov, T. Sukhanova, J. Phys. Chem. B 107, 13575 (2003).

    Article  Google Scholar 

  15. A.M. Turing, Computing Machinery and Intelligence, in Mind 59, 433 (1950).

    Google Scholar 

  16. H.G. Kilian, Prog. Colloid Polym. Sci. 72, 60 (1986).

    Google Scholar 

  17. E. Sackmann, R.F. Bruinsma, ChemPhysChem 3, 262 (2002).

    Article  PubMed  Google Scholar 

  18. H.G. Kilian, R. Metzler, B.J. Zink, J. Chem. Phys. 107, 8697 (1997).

    Article  Google Scholar 

  19. H.G. Kilian, Colloid Polym. Sci. 280, 661 (2002).

    Article  Google Scholar 

  20. W. Maier, A. Saupe, Z. Naturforsch. 14a, 882 (1959).

    Google Scholar 

  21. P.G. deGennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1975) p. 43.

  22. H. Gruler, Z. Naturforsch. 30a, 230 (1975).

    Google Scholar 

  23. R. Haase, Thermodynamik der Mischphasen (Springer, Berlin, 1980) p. 338.

  24. E.W. Montroll, M.F. Shlesinger, J. Stat. Phys. 32, 209 (1983).

    Article  Google Scholar 

  25. D.B. Kell, M.H. Ryder, A.S. Koprelyants, H.V. Westerhoff, Antonie van Leeuvenhoek 60, 145 (1991).

    Article  Google Scholar 

  26. F. van den Ent, L. Amos, J. Löwe, Nature 413, 39 (2001).

    Article  PubMed  Google Scholar 

  27. Q. Sun, W. Margolin, J. Bacteriol. 180, 2050 (1998).

    PubMed  Google Scholar 

  28. N. Nanninga, Microbiology 65, 319 (2001).

    Google Scholar 

  29. H.E. Kubitschek, Biophys. J. 9, 792 (1969).

    PubMed  Google Scholar 

  30. R.E. Ecker, M. Schaechter, Ann. New York Acad. Sci. 102, 549 (1963).

    Google Scholar 

  31. H.G. Kilian, R. Kemkemer, H. Gruler, Prog. Colloid Poym. Sci. 125, 198 (2004).

    Google Scholar 

  32. T. Atlung, Bacterial chromosome replication and the bacterial cell cycle, 2nd ed. (Department of Life Sciences and Chemistry, Roskilde University, 2004).

  33. R. Bernander, A. Poblawski, D.W. Grogan, Microbiology 146, 749 (2000).

    PubMed  Google Scholar 

  34. F.R. Gross, J. Cell Sci. 12, 117 (1989).

    Google Scholar 

  35. J. Liu, B. Rost, Protein Sci. 10, 1970 (2001).

    Article  PubMed  Google Scholar 

  36. P.A. Weiss, The Science of Life (Monz Cisco, New York, 1973) p. 276.

  37. Li-Ch Hsieh, L. Luo, H.C. Lee, AAPPS Bull. 13, 22 (2001).

    Google Scholar 

  38. B. Rost, Curr. Opin. Struct. Biol. 12, 368 (2002).

    Article  PubMed  Google Scholar 

  39. R.K. Scopes, Protein Purification, 2nd ed. (Springer, New York, 1987).

  40. http://www.ebi.ac.uk/integr8/OrganismSearch.do? action=browseOrgs.

  41. R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder, I.C. Gunsales, Biochemistry 14, 2355 (1975).

    Article  Google Scholar 

  42. H. Fraunfelder, P.G. Wolynes, R.H. Austin, Rev. Mod. Phys. 71, 419 (1999).

    Google Scholar 

  43. N.G. McCrum, B.E Read, G Williams, Anelastic and Dielectric Effects in Polymer Solids (Wiley, London-New York-Sydney, 1967) pp. 102 and 141.

  44. M. Schienbein, H. Gruler, Phys. Rev. E. 56, 7116 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Kilian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilian, H.G., Gruler, H., Bartkowiak, D. et al. Stationary cell size distributions and mean protein chain length distributions of Archaea, Bacteria and Eukaryotes described with an increment model in terms of irreversible thermodynamics. Eur. Phys. J. E 17, 307–325 (2005). https://doi.org/10.1140/epje/i2004-10143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10143-8

PACS.

Navigation