Skip to main content
Log in

Single-cell protein dynamics reproduce universal fluctuations in cell populations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Protein variability in single cells has been studied extensively in populations, but little is known about temporal protein fluctuations in a single cell over extended times. We present here traces of protein copy number measured in individual bacteria over multiple generations and investigate their statistical properties, comparing them to previously measured population snapshots. We find that temporal fluctuations in individual cells exhibit the same properties as those previously observed in populations. Scaled fluctuations around the mean of each trace exhibit the universal distribution shape measured in populations under a wide range of conditions and in two distinct microorganisms; the mean and variance of the traces over time obey the same quadratic relation. Analyzing the individual protein traces reveals that within a cell cycle protein content increases exponentially, with a rate that varies from cycle to cycle. This leads to a compact description of the trace as a 3-variable stochastic process —exponential rate, cell cycle duration and value at the cycle start— sampled once a cycle. This description is sufficient to reproduce both universal statistical properties of the protein fluctuations. Our results show that the protein distribution shape is insensitive to sub-cycle intracellular microscopic details and reflects global cellular properties that fluctuate between generations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kaern, T.C. Elston, W.J. Blake, J.J. Collins, Nat. Rev. Genet. 6, 451 (2005).

    Article  Google Scholar 

  2. N. Maheshri, E.K. O’Shea, Annu. Rev. Biophys. Biomol. Struct. 36, 413 (2007).

    Article  Google Scholar 

  3. A. Raj, A. van Oudenaarden, Cell 135, 216 (2008).

    Article  Google Scholar 

  4. A. Eldar, M.B. Elowitz, Nature 467, 167 (2010).

    Article  ADS  Google Scholar 

  5. J.R.S. Newman, S. Ghaemmaghami, J. Ihmels, D.K. Breslow, M. Noble, J.L. DeRisi, J.S. Weissman, Nature 441, 840 (2006).

    Article  ADS  Google Scholar 

  6. A. Bar-Even, J. Paulsson, N. Maheshri, M. Carmi, E. O’Shea, Y. Pilpel, N. Barkai, Nat. Genet. 38, 636 (2006).

    Article  Google Scholar 

  7. Y. Taniguchi, P.J. Choi, G.-W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, X.S. Xie, Science 329, 533 (2010).

    Article  ADS  Google Scholar 

  8. T.-L. To, N. Maheshri, Science 327, 1142 (2010).

    Article  ADS  Google Scholar 

  9. E.M. Ozbudak, M. Thattai, H.N. Lim, B.I. Shraiman, A. van Oudenaarden, Nature 427, 737 (2004).

    Article  ADS  Google Scholar 

  10. D. Volfson, J. Marciniak, W.J. Blake, N. Ostroff, L.S. Tsimring, J. Hasty, Nature 439, 861 (2006).

    Article  ADS  Google Scholar 

  11. H. Salman, N. Brenner, C.-K. Tung, N. Elyahu, E. Stolovicki, L. Moore, A. Libchaber, E. Braun, Phys. Rev. Lett. 108, 238105 (2012).

    Article  ADS  Google Scholar 

  12. N. Brenner, K. Farkash, E. Braun, Phys. Biol. 3, 172 (2006).

    Article  ADS  Google Scholar 

  13. B. Banerjee, S. Balasubramanian, G. Ananthakrishna, T.V. Ramakrishnan, G.V. Shivashankar, Biophys. J. 86, 3052 (2004).

    Article  ADS  Google Scholar 

  14. M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Science 297, 1183 (2002).

    Article  ADS  Google Scholar 

  15. A. Sanchez, I. Golding, Science 342, 1188 (2013).

    Article  ADS  Google Scholar 

  16. S. Di Talia, J.M. Skotheim, J.M. Bean, E.D. Siggia, F.R. Cross, Nature 448, 947 (2007).

    Article  ADS  Google Scholar 

  17. D. Huh, J. Paulsson, Nat. Genet. 43, 95 (2011).

    Article  Google Scholar 

  18. S. Tsuru, J. Ichinose, A. Kashiwagi, B.-W. Ying, K. Kaneko, T. Yomo, Phys. Biol. 6, 036015 (2009).

    Article  ADS  Google Scholar 

  19. L.B. Carey, D. van Dijk, P.M.A. Sloot, J.A. Kaandorp, E. Segal, PLoS Biol. 11, e1001528 (2013).

    Article  Google Scholar 

  20. E. Sharon, D. van Dijk, Y. Kalma, L. Keren, O. Manor, Z. Yakhini, E. Segal, Genome Res. 24, 1698 (2014).

    Article  Google Scholar 

  21. P. Nurse, Nature 286, 9 (1980).

    Article  ADS  Google Scholar 

  22. J.T. Mettetal, D. Muzzey, J.M. Pedraza, E.M. Ozbudak, A. van Oudenaarden, Proc. Natl. Acad. Sci. U.S.A. 103, 7304 (2006).

    Article  ADS  Google Scholar 

  23. P. Wang, L. Robert, J. Pelletier, W.L. Dang, F. Taddei, A. Wright, S. Jun, Curr. Biol. 20, 1099 (2010).

    Article  Google Scholar 

  24. I. Golding, J. Paulsson, S.M. Zawilski, E.C. Cox, Cell 123, 1025 (2005).

    Article  Google Scholar 

  25. S. Iyer-Biswas, G.E. Crooks, N.F. Scherer, A.R. Dinner, Phys. Rev. Lett. 113, 028101 (2014).

    Article  ADS  Google Scholar 

  26. M. Campos, I.V. Surovtsev, S. Kato, A. Paintdakhi, B. Beltran, S.E. Ebmeier, C. Jacobs-Wagner, Cell 159, 1433 (2014).

    Article  Google Scholar 

  27. S. Iyer-Biswas, C.S. Wright, J.T. Henry, K. Lo, S. Burov. Y. Lin, G.E. Crooks, S. Crosson, A.D. Dinner, N.F. Scherer, Proc. Natl. Acad. Sci. U.S.A. 111, 15912 (2014).

    Article  ADS  Google Scholar 

  28. M. Osella, E. Nugent, M. Cosentino Lagomarsino, Proc. Natl. Acad. Sci. U.S.A. 111, 3431 (2014).

    Article  ADS  Google Scholar 

  29. J. Stewart-Ornstein, J.S. Weissman, H. El-Samad, Mol. Cell 45, 483 (2012).

    Article  Google Scholar 

  30. E. Stolovicki, E. Braun, PLoS One 6, e20530 (2011).

    Article  ADS  Google Scholar 

  31. L.S. Moore, E. Stolovicki, E. Braun, PLoS One 8, e81671 (2013).

    Article  ADS  Google Scholar 

  32. A. Rocco, A.M. Kierzek, J. McFadden, PLoS One 8, e54272 (2013).

    Article  ADS  Google Scholar 

  33. O. Sliusarenko, J. Heinritz, T. Emonet, C. Jacobs-Wagner, Mol. Microbiol. 80, 612 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naama Brenner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, N., Braun, E., Yoney, A. et al. Single-cell protein dynamics reproduce universal fluctuations in cell populations. Eur. Phys. J. E 38, 102 (2015). https://doi.org/10.1140/epje/i2015-15102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15102-8

Keywords

Navigation