Skip to main content

Classification of non-Riemannian doubled-yet-gauged spacetime

An Erratum to this article was published on 08 November 2018

This article has been updated

A preprint version of the article is available at arXiv.

Abstract

Assuming \(\mathbf {O}(D,D)\) covariant fields as the ‘fundamental’ variables, double field theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, \((n,\bar{n})\), \(0\le n+\bar{n}\le D\). Upon these backgrounds, strings become chiral and anti-chiral over n and \(\bar{n}\) directions, respectively, while particles and strings are frozen over the \(n+\bar{n}\) directions. In particular, we identify (0, 0) as Riemannian manifolds, (1, 0) as non-relativistic spacetime, (1, 1) as Gomis–Ooguri non-relativistic string, \((D{-1},0)\) as ultra-relativistic Carroll geometry, and (D, 0) as Siegel’s chiral string. Combined with a covariant Kaluza–Klein ansatz which we further spell, (0, 1) leads to Newton–Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as \(D=10\), (3, 3) may open a new scheme for the dimensional reduction from ten to four.

Introduction

Ever since Einstein formulated his theory of gravity, i.e. general relativity (GR), by employing differential geometry à la Riemann, the Riemannian metric, \(g_{\mu \nu }\), has been privileged to be the only geometric and thus gravitational field. All other fields are meant to be ‘extra matters’. On the other hand, string theory suggests us to put a two-form gauge potential, \(B_{\mu \nu }\), and a scalar dilaton, \(\phi \), on an equal footing along with the metric. Forming the massless sector of closed strings, this triplet of objects is ubiquitous in all string theories. Further, a genuine stringy symmetry, T-duality, can mix the three of them [1, 2], thus hinting at the existence of stringy gravity which should take the entire closed string massless sector as geometric and gravitational. After a series of pioneering works on ‘doubled sigma models’ [3,4,5,6,7,8] and ‘double field theory’ (DFT) [9,10,11,12,13] (cf. [14,15,16] for reviews), such an idea of stringy gravity has materialized.Footnote 1

The word ‘double’ above refers to the fact that doubled \((D\,{+D})\)-dimensional coordinates are used for the description of D-dimensional physical spacetime. While such a usage was historically first made in the case of a torus background—by introducing a dual coordinate conjugate to the string winding momentum—the doubled coordinates are far more general and can be applied to any compact or non-compact spacetime, and not only to string but also to particle theories.

Stringy gravity of our interest adopts the doubled-yet-gauged coordinate system [17] which meets two properties. Firstly, an \(\mathbf {O}(D,D)\) group is a priori postulated, having the invariant constant “metric”,

$$\begin{aligned} {\mathcal {J}}_{AB}=\left( \begin{array}{c@{\quad }c} {0}&{}{1} \\ {1}&{}{0} \end{array}\right) . \end{aligned}$$
(1.1)

Along with its inverse, \({\mathcal {J}}^{AB}\), the invariant metric can be used to freely raise and lower the \(\mathbf {O}(D,D)\) vector indices (capital letters, \(A,B,\ldots \)). Secondly, the doubled coordinates are gauged by an equivalence relation,

$$\begin{aligned} x^{A}~\sim ~x^{A}+\Delta ^{A}(x), \end{aligned}$$
(1.2)

where \(\Delta ^{A}\) is an arbitrary ‘derivative-index-valued’ vector. This means that its superscript index must be identifiable as that of a derivative, \(\partial ^{A}={\mathcal {J}}^{AB}\partial _{B}\). For example, with arbitrary functions, \({\Phi }_{1}\), \(\Phi _{2}\) belonging to the theory, \(\Delta ^{A}=\Phi _{1}\partial ^{A}\Phi _{2}\). The equivalence relation can be realized by requiring that all the fields or functions in stringy gravity—such as \(\Phi _{1}\), \(\Phi _{2}\), physical fields, local symmetry parameters, and their arbitrary derivatives—should be invariant under the coordinate gauge symmetry shift,

$$\begin{aligned} \Phi (x+\Delta )=\Phi (x)\quad \Longleftrightarrow \quad \Delta ^{A}\partial _{A}=0. \end{aligned}$$
(1.3)

In this way, a single physical point is not represented by a point, as in ordinary Riemannian geometry, but as a gauge orbit in the doubled coordinate system.

The above coordinate gauge symmetry invariance is equivalent to the so-called ‘section condition’ in DFT,

$$\begin{aligned} \partial _{A}\partial ^{A}=0. \end{aligned}$$
(1.4)

With respect to the off-block-diagonal form of the \(\mathbf {O}(D,D)\) metric (1.1), the doubled coordinates split into two parts: \(x^{A}=(\tilde{x}_{\mu }, x^{\nu })\) and \(\partial _{A}=(\tilde{\partial }^{\mu },\partial _{\nu })\), such that \(\partial _{A}\partial ^{A}=2\partial _{\mu }\tilde{\partial }^{\mu }\). The general solution to the section condition is then given by \(\tilde{\partial }^{\mu }\equiv 0\), up to \(\mathbf {O}(D,D)\) rotations [10, 11].

Diffeomorphism covariance in doubled-yet-gauged spacetime reads

$$\begin{aligned} \delta x^{A}=\xi ^{A}, \quad \delta \partial _{A}=-\partial _{A}\xi ^{B}\partial _{B} =(\partial ^{B}\xi _{A}-\partial _{A}\xi ^{B})\partial _{B}, \end{aligned}$$
(1.5)

and for a covariant tensor (or tensor density with weight \(\omega \)),

$$\begin{aligned} \delta T_{A_{1}\cdots A_{n}}= & {} -\omega \partial _{B}\xi ^{B}T_{A_{1}\cdots A_{n}}\nonumber \\&+{\sum _{i=1}^{n}\,}(\partial _{B} \xi _{A_{i}}-\partial _{A_{i}}\xi _{B})T_{A_{1}\cdots A_{i-1}}{}^{B}{}_{A_{i+1}\cdots A_{n}}.\nonumber \\ \end{aligned}$$
(1.6)

The latter corresponds to the passive counterpart of the “generalized Lie derivative”, \({\hat{\mathcal {L}}}_{\xi }\), à la Siegel [10].

The whole massless sector of closed strings, or stringy gravitons, can be represented by a unit-weighted scalar density, \(e^{-2d}\), and a symmetric projector,

$$\begin{aligned} P_{AB}=P_{BA}, \quad P_{A}{}^{B}P_{B}{}^{C}=P_{A}{}^{C}. \end{aligned}$$
(1.7)

The complementary, orthogonal projector, \({\bar{P}}_{AB}={\mathcal {J}}_{AB}-P_{AB}\), satisfies, from (1.7), \(P{\bar{P}}=0\), \({\bar{P}}^{2}={\bar{P}}\). Covariant derivatives, \({\nabla }_{A}=\partial _{A}+\Gamma _{A}\), scalar curvature \(S_{\scriptscriptstyle {(0)}}\) and “Ricci-like” curvature \(P_{A}{}^{C}{\bar{P}}_{B}{}^{D}S_{CD}\) are then expressed in terms of \(\{P_{AB}, {\bar{P}}_{AB}, d\}\) and their derivatives or equivalently in terms of the stringy analog of the Christoffel symbol, \(\Gamma _{ABC}\) (2.17) [18].Footnote 2

The difference of the two projectors sets a symmetric \(\mathbf {O}(D,D)\) element, known as the DFT-metric (or “generalized metric”),

$$\begin{aligned}&{\mathcal {H}}_{AB}={\mathcal {H}}_{BA}=P_{AB}-{\bar{P}}_{AB}\quad \text { satisfying }\nonumber \\&{\mathcal {H}}_{A}{}^{C}{\mathcal {H}}_{B}{}^{D}{\mathcal {J}}_{CD}={\mathcal {J}}_{AB}. \end{aligned}$$
(1.8)

These \(\mathbf {O}(D,D)\) covariant defining properties of the stringy gravitational fields can be conveniently solved by the conventional variables,

$$\begin{aligned} \begin{array}{ll} {\mathcal {H}}_{MN}=\left( \begin{array}{c@{\quad }c}g^{\mu \nu }&{}-g^{\mu \sigma }B_{\sigma \lambda }\\ B_{\kappa \rho }g^{\rho \nu }&{}~~g_{\kappa \lambda }-B_{\kappa \rho } g^{\rho \sigma }B_{\sigma \lambda }\end{array}\right) . \end{array} \end{aligned}$$
(1.9)

However, this is not the most general solution: counter examples have been reported where the upper left \(D\times D\) block of \({\mathcal {H}}_{AB}\) is degenerate [20,21,22], and have been shown to provide a natural geometry for the non-relativistic string theory à la Gomis and Ooguri [23].Footnote 3 Namely, by assuming the \(\mathbf {O}(D,D)\) covariant variables as the fundamental fields, DFT or stringy gravity becomes more general than GR: it encompasses ‘non-Riemannian’ spacetime where the Riemannian metric, \(g_{\mu \nu }\), cannot be defined, even locally. This includes various ‘singular’ limits of the Riemannian metric of which the inverse, \(g^{\mu \nu }\), becomes degenerate; cf. T-fold, ‘non-geometries’ or ‘waves’ in the global sense [6,7,8, 26,27,28,29,30,31,32]).

Scope of the paper

It is the purpose of the present paper to classify completely DFT backgrounds, by deriving the most general solution to the defining property of the stringy gravitational field, or (1.8). Our classification is given in terms of two non-negative integers, \((n,{\bar{n}})\), \(0\le n+\bar{n}\le D\). Except for the (0, 0) case, these are generically non-Riemannian.

Since various DFTs and the relevant doubled sigma models have been constructed, strictly in terms of the \(\mathbf {O}(D,D)\) covariant fields without referring to the Riemannian ones \(\{g_{\mu \nu },B_{\mu \nu },\phi \}\),Footnote 4 our result can be readily and unambiguously applicable to these models which include, e.g. coupling to the standard model [33], higher spin [34], fluctuation or Noether analyses [21, 35,36,37], the doubled-yet-gauged Green–Schwarz superstring action [22] and the maximally supersymmetric \(D=10\) DFT [38]. In particular, this last example, with the Killing spinor equations therein, may lead to a new scheme for dimensional reduction from ten to four, by assuming the six-dimensional internal space to be non-Riemannian, alternative to the traditional string compactification on ‘small’ Riemannian manifolds [39]. Further applications can be found in the holographic correspondences between Newton–Cartan gravity and condensed matter physics; see e.g. [40, 41].

Organization of the paper

The rest of the paper is structured as follows. In Sect. 2, we classify the DFT-metric and spell the corresponding DFT-vielbeins. We discuss the dynamics of point particle and string upon these backgrounds. We also spell a path integral definition of the proper length in doubled-yet-gauged spacetime as well as a covariant Kaluza–Klein ansatz for DFT. In Sect. 3, we discuss various applications, such as Gomis–Ooguri non-relativistic string, non-relativistic and ultra-relativistic geometries, Siegel’s chiral string and Newton–Cartan gravity. The appendix contains the technical derivation of the main result.

General results

Classification of the DFT-metric

As recalled in the introduction, the DFT-metric is by definition a symmetric \(\mathbf {O}(D,D)\) element, satisfying the following relation:

$$\begin{aligned} {\mathcal {H}}_{AB}={\mathcal {H}}_{BA}, \quad {\mathcal {H}}_{A}{}^{B}{\mathcal {H}}_{B}{}^{C}=\delta _{A}{}^{C}. \end{aligned}$$
(2.1)

Our main result consists in providing a full classification for DFT-metrics by solving the above defining properties: the most general solution is characterized by two non-negative integers, \((n,{{\bar{n}}})\), \(0\le n+{\bar{n}}\le D\), and assumes the following form:

$$\begin{aligned} {\mathcal {H}}_{AB}=\left( \begin{array}{c@{\quad }c} H^{\mu \nu }&{} -H^{\mu \sigma }B_{\sigma \lambda }+Y_{i}^{\mu }X^{i}_{\lambda }- {\bar{Y}}_{\bar{\imath }}^{\mu }{\bar{X}}^{\bar{\imath }}_{\lambda } \\ B_{\kappa \rho }H^{\rho \nu }+X^{i}_{\kappa }Y_{i}^{\nu } -{\bar{X}}^{\bar{\imath }}_{\kappa }{\bar{Y}}_{\bar{\imath }}^{\nu }&{} K_{\kappa \lambda }-B_{\kappa \rho }H^{\rho \sigma }B_{\sigma \lambda } +2X^{i}_{(\kappa }B_{\lambda )\rho }Y_{i}^{\rho } -2{\bar{X}}^{\bar{\imath }}_{(\kappa }B_{\lambda )\rho }{\bar{Y}}_{\bar{\imath }}^{\rho } \end{array}\right) \end{aligned}$$
(2.2)

where \(i,j=1,2,\ldots , n\) and \(\bar{\imath },\bar{\jmath }=1,2,\ldots , {\bar{n}}\). The variables, \(\left\{ H^{\mu \nu },\,K_{\mu \nu }, \,B_{\mu \nu },\,X^{i}_{\mu },\,Y^{\nu }_{j},\,{\bar{X}}^{\bar{\imath }}_{\mu },\,{\bar{Y}}_{\bar{\jmath }}^{\nu }\right\} \), must meet the following properties:

  • \(H^{\mu \nu }\) and \(K_{\mu \nu }\) are symmetric tensors

    $$\begin{aligned} H^{\mu \nu }=H^{\nu \mu }, \quad K_{\mu \nu }=K_{\nu \mu }, \end{aligned}$$
    (2.3)

    whose kernels are spanned by \(\big \{X^{i}_{\mu },{\bar{X}}^{\bar{\imath }}_{\nu }\big \}\) and \(\big \{Y_{j}^{\mu },{\bar{Y}}^{\nu }_{\bar{\jmath }}\big \}\), respectively,

    $$\begin{aligned} H^{\mu \nu }X^{i}_{\nu }= & {} 0,\quad H^{\mu \nu }{\bar{X}}^{\bar{\imath }}_{\nu }=0;\nonumber \\ K_{\mu \nu }Y_{j}^{\nu }= & {} 0,\quad K_{\mu \nu }{\bar{Y}}_{\bar{\jmath }}^{\nu }=0; \end{aligned}$$
    (2.4)
  • a completeness relation,

    $$\begin{aligned} H^{\mu \rho }K_{\rho \nu } +Y_{i}^{\mu }X^{i}_{\nu }+{\bar{Y}}_{\bar{\imath }}^{\mu }{\bar{X}}^{\bar{\imath }}_{\nu } =\delta ^{\mu }{}_{\nu }; \end{aligned}$$
    (2.5)
  • the skew-symmetry of the B-field,

    $$\begin{aligned} B_{\mu \nu }=-B_{\nu \mu }. \end{aligned}$$
    (2.6)

While the derivation is carried out in the appendix, some comments are in order. From (2.4), (2.5) and the linear independency of \(\left\{ X^{i}_{\mu }, {\bar{X}}^{\bar{\imath }}_{\nu }\right\} \), orthonormal as well as algebraic relations follow,

$$\begin{aligned}&Y^{\mu }_{i}X_{\mu }^{j}=\delta _{i}{}^{j},\quad {\bar{Y}}^{\mu }_{\bar{\imath }}{\bar{X}}_{\mu }^{\bar{\jmath }}=\delta _{\bar{\imath }}{}^{\bar{\jmath }},\quad Y^{\mu }_{i}{\bar{X}}_{\mu }^{\bar{\jmath }}= {\bar{Y}}^{\mu }_{\bar{\imath }}X_{\mu }^{j}=0,\nonumber \\&H^{\rho \mu }K_{\mu \nu }H^{\nu \sigma }=H^{\rho \sigma },\quad K_{\rho \mu }H^{\mu \nu }K_{\nu \sigma }=K_{\rho \sigma }. \end{aligned}$$
(2.7)

With the choice of the section, \(\tilde{\partial }^{\mu }\equiv 0\), the doubled-yet-gauged diffeomorphisms (1.5), (1.6), or the generalized Lie derivative of the DFT-metric, cf. (A.4), imply that the variables transform covariantly as

$$\begin{aligned} \delta X^{i}_{\mu }= & {} {\mathcal {L}}_{\xi }X^{i}_{\mu },\quad \delta {\bar{X}}^{\bar{\imath }}_{\mu }={\mathcal {L}}_{\xi }{\bar{X}}^{\bar{\imath }}_{\mu },\nonumber \\ \delta Y_{j}^{\nu }= & {} {\mathcal {L}}_{\xi }Y_{j}^{\nu },\quad \delta {\bar{Y}}_{\bar{\jmath }}^{\nu }={\mathcal {L}}_{\xi }{\bar{Y}}_{\bar{\jmath }}^{\nu },\nonumber \\ \delta H^{\mu \nu }= & {} {\mathcal {L}}_{\xi }H^{\mu \nu },\quad \delta K_{\mu \nu }={\mathcal {L}}_{\xi }K_{\mu \nu },\quad \nonumber \\ \delta B_{\mu \nu }= & {} {\mathcal {L}}_{\xi }B_{\mu \nu }+\partial _{\mu }\tilde{\xi }_{\nu } -\partial _{\nu }\tilde{\xi }_{\mu }, \end{aligned}$$
(2.8)

where \({\mathcal {L}}_{\xi }\) denotes the ordinary, i.e. undoubled, Lie derivative with the local parameter, \(\xi ^{\nu }\), being part of the doubled vector field, \(\xi ^{A}=(\tilde{\xi }_{\mu },\xi ^{\nu })\). Our \((n,{\bar{n}})\)-classification of the DFT-metric having the explicit parametrization (2.2) is particularly useful for the choice of the section, \(\tilde{\partial }^{\mu }\equiv 0\). For example, the action for a massless scalar field reads (cf. [43])

$$\begin{aligned} \int _{\mathrm{{section}}} e^{-2d}~{\mathcal {H}}^{AB}\partial _{A}\Phi \partial _{B}\Phi ~\equiv ~ \int \mathrm{d}^{D}x~ e^{-2d}~H^{\mu \nu }\partial _{\mu }\Phi \partial _{\nu }\Phi . \end{aligned}$$
(2.9)

For couplings to generic tensors or Yang–Mills fields, we refer to [18, 21, 36, 44, 45]. However, if the \((n,{\bar{n}})\) DFT-metric (2.2) admits an isometry direction, there appears arbitrariness in choosing the section. In this case, our parametrization (2.2) may be modified; see e.g. [32, 46].

Clearly, constant \((n,{\bar{n}})\) DFT-metric (2.2) and DFT-dilaton, d, solve the equations of motion of DFT. Thus, our \((n,{\bar{n}})\) classification also accounts for non-Riemannian ‘flat’ backgrounds. It is worthwhile to note that the characteristic value, \((n,{\bar{n}})\), may change point-wise in a given doubled-yet-gauged curved spacetime, typically at a “Riemannian singular point”. Further, \(\mathbf {O}(D,D)\) rotations (along isometry directions) can also change the value of \((n,{\bar{n}})\), for example, the (0, 0) fundamental string background à la Dabholkar et al. [47] can be mapped to (1, 1) by certain \(\mathbf {O}(D,D)\) rotations [20] (cf. [24]). However, the trace of a DFT-metric,

$$\begin{aligned} {\mathcal {H}}_{A}{}^{A}=2(n-{\bar{n}}), \end{aligned}$$
(2.10)

remains invariant under \(\mathbf {O}(D,D)\) rotations and further point-wise if we fix the underlying spin group (2.50).

It is instructive to note that the B-field contributes to the DFT-metric by an \(\mathbf {O}(D,D)\) conjugation,

$$\begin{aligned} {\mathcal {H}}_{AB}= & {} \left( \begin{array}{c@{\quad }c} 1&{}0\\ B&{}1 \end{array}\right) \left( \begin{array}{c@{\quad }c} H~&{}~Y_{i}(X^{i})^{T}-{\bar{Y}}_{\bar{\imath }}({\bar{X}}^{\bar{\imath }})^{T}\\ X^{i}(Y_{i})^{T}-{\bar{X}}^{\bar{\imath }}({\bar{Y}}_{\bar{\imath }})^{T} &{}~\quad K \end{array}\right) \nonumber \\&\times \left( \begin{array}{c@{\quad }c} 1&{}-B\\ 0&{}1\end{array}\right) , \end{aligned}$$
(2.11)

such that the contribution is ‘Abelian’, in the following sense:

$$\begin{aligned} \left( \begin{array}{c@{\quad }c}1&{}0\\ B_{1}&{}1\end{array}\right) \left( \begin{array}{c@{\quad }c}1&{}0\\ B_{2}&{}1\end{array}\right) =\left( \begin{array}{c@{\quad }c}1&{}0\\ B_{1}+B_{2}&{}1\end{array}\right) . \end{aligned}$$
(2.12)

Further, the precise expression of the \((n,{\bar{n}})\) DFT-metric (2.2) as well as the fundamental algebraic relations (2.4), (2.5), (2.6), are invariant under several transformations.

Firstly under obvious \(\mathbf {GL}(n)\times \mathbf {GL}({\bar{n}})\) rotations,

$$\begin{aligned}&\left( X^{i}_{\mu },\,Y_{i}^{\mu },\,{\bar{X}}^{\bar{\imath }}_{\mu } ,\,{\bar{Y}}_{\bar{\imath }}^{\nu }\right) \nonumber \\&\quad \longmapsto \left( X^{j}_{\mu }\,R_{j}{}^{i},\,R^{-1}{}_{i}{}^{j} \,Y_{j}^{\nu },\,{\bar{X}}^{\bar{\jmath }}_{\mu }\,\bar{R}_{\bar{\jmath }}{}^{\bar{\imath }} ,\,\bar{R}^{-1}{}_{\bar{\imath }}{}^{\bar{\jmath }}\,{\bar{Y}}_{\bar{\jmath }}^{\nu }\right) \,; \end{aligned}$$
(2.13)

secondly under the transformation of only the B-field having two arbitrary skew-symmetric local parameters, \(m_{ij}=-m_{ji}\), \({\bar{m}}_{\bar{\imath }\bar{\jmath }}=-{\bar{m}}_{\bar{\jmath }\bar{\imath }}\),

$$\begin{aligned} B_{\mu \nu } \quad \longmapsto \quad B_{\mu \nu }+X_{\mu }^{i}X_{\nu }^{j}m_{ij} +{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{X}}_{\nu }^{\bar{\jmath }}{\bar{m}}_{\bar{\imath }\bar{\jmath }}; \end{aligned}$$
(2.14)

and lastly under the following somewhat less trivial transformations of \(\{Y_{i}^{\mu },\,{\bar{Y}}_{\bar{\imath }}^{\mu },\,K_{\mu \nu },\,B_{\mu \nu }\}\):

$$\begin{aligned}&Y_{i}^{\mu } \longmapsto Y_{i}^{\mu }+H^{\mu \nu }V_{\nu i},\nonumber \\&{\bar{Y}}_{\bar{\imath }}^{\mu }\longmapsto {\bar{Y}}_{\bar{\imath }}^{\mu } +H^{\mu \nu }{\bar{V}}_{\nu \bar{\imath }},\nonumber \\&K_{\mu \nu }\longmapsto K_{\mu \nu }-2X^{i}_{(\mu }K_{\nu ) \rho }H^{\rho \sigma }V_{\sigma i}-2{\bar{X}}^{\bar{\imath }}_{(\mu }K_{\nu ) \rho }H^{\rho \sigma }{\bar{V}}_{\sigma \bar{\imath }}\nonumber \\&\qquad \quad \qquad +\left( X_{\mu }^{i}V_{\rho i} +{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{V}}_{\rho \bar{\imath }}\right) H^{\rho \sigma }\left( X_{\nu }^{j}V_{\sigma j} +{\bar{X}}_{\nu }^{\bar{\jmath }}{\bar{V}}_{\sigma \bar{\jmath }}\right) ,\nonumber \\&B_{\mu \nu }\longmapsto B_{\mu \nu }-2X^{i}_{[\mu }K_{\nu ] \rho }H^{\rho \sigma }V_{\sigma i}+2{\bar{X}}^{\bar{\imath }}_{[\mu }K_{\nu ] \rho }H^{\rho \sigma }{\bar{V}}_{\sigma \bar{\imath }}\nonumber \\&\qquad \quad \qquad +2X^{i}_{[\mu }{\bar{X}}^{\bar{\imath }}_{\nu ]}V_{\rho i}H^{\rho \sigma } {\bar{V}}_{\sigma \bar{\imath }}, \end{aligned}$$
(2.15)

where \(V_{\mu i}\) and \({\bar{V}}_{\mu \bar{\imath }}\) are arbitrary local parameters. In fact, the latter two transformations, (2.14) and (2.15), can be unified into

$$\begin{aligned}&Y_{i}^{\mu }\longmapsto Y_{i}^{\mu }+H^{\mu \nu }V_{\nu i},\nonumber \\&{\bar{Y}}_{\bar{\imath }}^{\mu }\longmapsto {\bar{Y}}_{\bar{\imath }}^{\mu }+H^{\mu \nu } {\bar{V}}_{\nu \bar{\imath }},\nonumber \\&K_{\mu \nu }\longmapsto K_{\mu \nu }-2X^{i}_{(\mu }K_{\nu ) \rho }H^{\rho \sigma }V_{\sigma i}-2{\bar{X}}^{\bar{\imath }}_{(\mu }K_{\nu ) \rho }H^{\rho \sigma }{\bar{V}}_{\sigma \bar{\imath }}\nonumber \\&\qquad \qquad \quad +\left( X_{\mu }^{i}V_{\rho i} +{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{V}}_{\rho \bar{\imath }}\right) H^{\rho \sigma }\left( X_{\nu }^{j} V_{\sigma j}+{\bar{X}}_{\nu }^{\bar{\jmath }}{\bar{V}}_{\sigma \bar{\jmath }}\right) ,\nonumber \\&B_{\mu \nu }\longmapsto B_{\mu \nu } -2X^{i}_{[\mu }V_{\nu ]i}+2{\bar{X}}^{\bar{\imath }}_{[\mu }{\bar{V}}_{\nu ]\bar{\imath }}\nonumber \\&\qquad \qquad \quad +\,2X^{i}_{[\mu }{\bar{X}}^{\bar{\imath }}_{\nu ]}\left( Y_{i}^{\rho }{\bar{V}}_{\rho \bar{\imath }} +{\bar{Y}}_{\bar{\imath }}^{\rho }V_{\rho i}+V_{\rho i}H^{\rho \sigma } {\bar{V}}_{\sigma \bar{\imath }}\right) .\nonumber \\ \end{aligned}$$
(2.16)

Note that in (2.15) the local parameters appear only through the contractions with \(H^{\mu \nu }\), i.e \(H^{\mu \nu }V_{\nu i}\) and \(H^{\mu \nu }{\bar{V}}_{\nu i}\). On the other hand in (2.16), the B-field transformation contains orthogonal contributions. Substituting \(V_{\mu i}=-{{\textstyle \frac{1}{2}}}m_{ij}X^{j}_{\mu }\) and \({\bar{V}}_{\mu \bar{\imath }}={{\textstyle \frac{1}{2}}}{\bar{m}}_{\bar{\imath }\bar{\jmath }}{\bar{X}}^{\bar{\jmath }}_{\mu }\) into (2.16) reproduces (2.14). Alternatively, if we replace \(V_{\mu i}\) and \({\bar{V}}_{\mu \bar{\imath }}\) in (2.16) by \(K_{\mu \nu }H^{\nu \rho }V_{\rho i}\) and \(K_{\mu \nu }H^{\nu \rho }{\bar{V}}_{\rho \bar{\imath }}\), we recover (2.15).

The dynamics of the DFT-metric and the DFT-dilaton is dictated by the Euler–Lagrange equations of DFT. The expression of the \((n,{\bar{n}})\) DFT-metric (2.2) may then be inserted into the known stringy extension of the Christoffel symbol to lead to covariant derivatives and curvatures [18]. Yet, the trace (2.10) of the \((n,{\bar{n}})\) DFT-metric can be nontrivial, and this calls for some revision of the previous result:

$$\begin{aligned} \Gamma _{CAB}= & {} 2\left( P\partial _{C}P{\bar{P}}\right) _{[AB]}+2\left( {{{\bar{P}}}_{[A}{}^{D}{{\bar{P}}}_{B]}{}^{E}}-{P_{[A}{}^{D}P_{B]}{}^{E}}\right) \nonumber \\&\times \;\partial _{D}P_{EC}-4\left( \textstyle {\frac{1}{P_{M}{}^{M}-1}}P_{C[A}P_{B]}{}^{D}\right. \nonumber \\&\left. +\textstyle {\frac{1}{{\bar{P}}_{M}{}^{M}-1}}{\bar{P}}_{C[A}{\bar{P}}_{B]}{}^{D}\right) \left( \partial _{D}d+(P\partial ^{E}P{\bar{P}})_{[ED]}\right) ,\nonumber \\ \end{aligned}$$
(2.17)

which now allows for generic values for the traces of the projectors,

$$\begin{aligned} P_{M}{}^{M}=D+n-{\bar{n}}, \quad {\bar{P}}_{M}{}^{M}=D-n+{\bar{n}}. \end{aligned}$$
(2.18)

Particle and string on \((n,{\bar{n}})\) doubled-yet-gauged spacetime

While the notion of doubled-yet-gauged spacetime might sound somewhat mysterious, it is possible to define proper length and hence to show that it is a ‘metric space’. To do so, we first note that the usual infinitesimal one-form, \(\mathrm{d}x^{A}\), is neither diffeomorphism covariant (1.5), (1.6),

$$\begin{aligned} \delta (\mathrm{d}x^{A})=\mathrm{d}x^{B}\partial _{B}V^{A}\ne \mathrm{d}x^{B}(\partial _{B}V^{A}-\partial ^{A}V_{B}), \end{aligned}$$
(2.19)

nor coordinate gauge symmetry invariant (1.3), since

$$\begin{aligned} \mathrm{d}\Delta ^{A}=\mathrm{d}x^{B}\partial _{B}\Delta ^{A}\ne 0. \end{aligned}$$
(2.20)

Thus, the naive contraction with the DFT-metric, \(\mathrm{d}x^{A}\mathrm{d}x^{B}{\mathcal {H}}_{AB}\), cannot give any sensible definition of proper length in doubled-yet-gauged spacetime. To cure the problem, we need to gauge \(\mathrm{d}x^{A}\) explicitly, introducing a connection, \({\mathcal {A}}^{A}\), which should satisfy the same property as the coordinate gauge symmetry generator, \(\Delta ^{A}\) (1.3),

$$\begin{aligned} \mathrm{D}x^{A}:=\mathrm{d}x^{A}-{\mathcal {A}}^{A}, \quad {\mathcal {A}}^{A}\partial _{A}=0, \quad {\mathcal {A}}^{A}{\mathcal {A}}_{A}=0. \end{aligned}$$
(2.21)

Provided the connection transforms appropriately, \(\mathrm{D}x^{A}\) becomes a well-behaved i.e. covariant vector [20],

$$\begin{aligned} \delta x^{A}= & {} \xi ^{A}, \nonumber \\ \delta {\mathcal {A}}^{A}= & {} \partial ^{A}\xi _{B}(\mathrm{d}x^{B}-{\mathcal {A}}^{B})\quad \nonumber \\&\Longrightarrow \quad {\delta (\mathrm{D}x^{A})=(\partial _{B}\xi ^{A}-\partial ^{A}\xi _{B})\mathrm{D}x^{B}}; \nonumber \\ \delta x^{A}= & {} \Delta ^{A}, \nonumber \\ \delta {\mathcal {A}}^{A}= & {} \mathrm{d}\Delta ^{A}\quad \Longrightarrow \quad {\delta (\mathrm{D}x^{A})=0}. \end{aligned}$$
(2.22)

We propose then to define the proper distance in doubled-yet-gauged spacetime by the path integral [48],

$$\begin{aligned} \left| \left| x_{1},\, x_{2}\right| \right| :=-\ln \left[ \int {\mathcal {D}}{\mathcal {A}}\,\exp \left( -\int _{1}^{2} \sqrt{\mathrm{D}x^{A}\mathrm{D}x^{B}{\mathcal {H}}_{AB}}\right) \right] . \end{aligned}$$
(2.23)

By letting \(\tilde{\partial }^{\mu }\equiv 0\) and therefore \({\mathcal {A}}^{A}\,{\equiv (A_{\mu },0)}\), we may solve the constraints and write

$$\begin{aligned} \mathrm{D}x^{A}\equiv \left( \mathrm{d}\tilde{x}_{\mu }-A_{\mu },\,\mathrm{d}x^{\nu }\right) . \end{aligned}$$
(2.24)

That is to say, only half of the doubled coordinates, i.e. the \(\tilde{x}_{\mu }\) directions, are gauged. Furthermore, with the Riemannian DFT-metric (1.9), we get [20]

$$\begin{aligned} \mathrm{D}x^{A}\mathrm{D}x^{B}{\mathcal {H}}_{AB}&\equiv \mathrm{d}{x}^{\mu }\mathrm{d}{x}^{\nu }g_{\mu \nu }+ \left( \mathrm{d}{\tilde{x}}_{\mu }-A_{\mu }+\mathrm{d}{x}^{\rho }B_{\rho \mu }\right) \nonumber \\&\quad \times \left( \mathrm{d}{\tilde{x}}_{\nu }-A_{\nu }+\mathrm{d}{x}^{\sigma }B_{\sigma \nu }\right) g^{\mu \nu }. \end{aligned}$$
(2.25)

Thus, after integrating out the auxiliary connection, our proposal (2.23) reduces—at least classically—to the conventional, i.e. Riemannian proper distance, \(\left| \left| x_{1}^{\mu },\, x_{2}^{\mu }\right| \right| ={{\int _{1}^{2}}}\sqrt{\mathrm{d}{x}^{\mu }\mathrm{d}{x}^{\nu }g_{\mu \nu }}\). Being independent of the gauged \(\tilde{x}_{\mu }\) coordinates, i.e. \(\left| \left| x_{1}^{A},\, x_{2}^{A}\right| \right| \equiv \left| \left| x_{1}^{\mu },\, x_{2}^{\mu }\right| \right| \), indeed Eq. (2.23) measures the distance between two ‘gauge orbits’.

The exponent in (2.23) immediately sets the action for a point particle in doubled-yet-gauged spacetime, or its square-root free einbein formulation [42],

$$\begin{aligned} { S_{\scriptscriptstyle \mathrm{{particle}}}= \int \mathrm{d}\tau ~e^{-1\,}\mathrm{D}_{\tau }x^{A}\mathrm{D}_{\tau }x^{B}{\mathcal {H}}_{AB}(x)-{{\textstyle \frac{1}{4}}}m^{2}e.} \end{aligned}$$
(2.26)

It also easily extends to (Nambu–Goto type) area and volume, which in turn provides the doubled-yet-gauged string action [20] (cf. [8] and also [22] for an extension to the Green–Schwarz superstring),

$$\begin{aligned} S_{\scriptscriptstyle \mathrm{{string}}}=&\,{\textstyle {\frac{1}{4\pi \alpha ^{\prime }}}}{{\int }}\mathrm{d}^{2}\sigma ~ {\mathcal {L}}_{\scriptscriptstyle \mathrm{{string}}},\nonumber \\ {\mathcal {L}}_{\scriptscriptstyle \mathrm{{string}}}=&-{{\textstyle \frac{1}{2}}}\sqrt{-h}h^{\alpha \beta } \mathrm{D}_{\alpha }x^{A}\mathrm{D}_{\beta }x^{B}{\mathcal {H}}_{AB}(x)-\epsilon ^{\alpha \beta } \mathrm{D}_{\alpha }x^{A}{\mathcal {A}}_{\beta A}. \end{aligned}$$
(2.27)

These two actions are fully covariant under \(\mathbf {O}(D,D)\) rotations, coordinate gauge symmetry (1.3), target-spacetime diffeomorphisms (1.6), world-volume diffeomorphisms and Weyl symmetry in the string case.

Besides the constraint imposed by the auxiliary potential, \({\mathcal {A}}^{A}\), the equation of motion of the former particle action can be spelled in terms of the stringy Christoffel connection (2.17),

$$\begin{aligned}&e\frac{\mathrm{d}~}{\mathrm{d}\tau }(e^{-1}{\mathcal {H}}_{AB}\mathrm{D}_{\tau }x^{B}) +2\Gamma _{ABC}({\bar{P}}\mathrm{D}_{\tau }x)^{B}(P\mathrm{D}_{\tau }x)^{C}=0.\nonumber \\ \end{aligned}$$
(2.28)

On the other hand, for a string propagating on the (0, 0) Riemannian background, the auxiliary potential, \({\mathcal {A}}^{A}\), implies the self-duality (i.e. chirality) over the entire doubled spacetime [20],

$$\begin{aligned} \mathrm{D}_{\alpha }x_{A}+\textstyle {\frac{1}{\sqrt{-h}}} \epsilon _{\alpha }{}^{j\beta }{\mathcal {H}}_{A}{}^{B}\mathrm{D}_{\beta }x_{B}=0, \end{aligned}$$
(2.29)

and the Euler–Lagrangian equation of \(x^{A}\) gets simplified to give the stringy geodesic equation,

$$\begin{aligned} \textstyle {\frac{1}{\sqrt{-h}}}\partial _{\alpha }(\sqrt{-h} {\mathcal {H}}_{AB}\mathrm{D}^{\alpha }x^{B})+\Gamma _{ABC}({\bar{P}}\mathrm{D}_{\alpha }x)^{B} (P\mathrm{D}^{\alpha }x)^{B}=0, \end{aligned}$$
(2.30)

which extends (2.28), yet with a different numerical factor in front of the connection, 2 versus 1.

For a generic non-Riemannian background, the analysis is more subtle, which we investigate hereafter. We substitute the generic \((n,{\bar{n}})\) DFT-metric (2.2) into the covariant actions, and move from doubled to undoubled formalism. One useful identity which generalizes (2.25) from Riemannian (0, 0) to a generic \((n,{\bar{n}})\) case is, with \(\mathrm{D}_{\alpha }x^{A}=(\partial _{\alpha }\tilde{x}_{\mu }-A_{\alpha \mu },\partial _{\alpha }x^{\nu })\),

$$\begin{aligned} \mathrm{D}_{\alpha }x^{M}\mathrm{D}_{\beta }x^{N}{\mathcal {H}}_{MN}&=\partial _{\alpha } x^{\mu }\partial _{\beta }x^{\nu } K_{\mu \nu }+ \left( \mathrm{D}_{\alpha }\tilde{x}_{\mu }-B_{\mu \kappa }\partial _{\alpha }x^{\kappa }\right) \nonumber \\&\quad \times \;\left( \mathrm{D}_{\beta }\tilde{x}_{\nu }-B_{\nu \lambda }\partial _{\beta }x^{\lambda } \right) H^{\mu \nu }\nonumber \\&\quad +\;2X^{i}_{\mu }\partial _{(\alpha }x^{\mu }\left[ \mathrm{D}_{\beta )}\tilde{x}_{\nu }-B_{\nu \rho }\partial _{\beta )}x^{\rho }\right] Y_{i}^{\nu }\nonumber \\&\quad -\;2{\bar{X}}^{\bar{\imath }}_{\mu }\partial _{(\alpha }x^{\mu }\left[ \mathrm{D}_{\beta )}\tilde{x}_{\nu }-B_{\nu \rho }\partial _{\beta )}x^{\rho }\right] {\bar{Y}}_{\bar{\imath }}^{\nu }, \end{aligned}$$
(2.31)

which reads more explicitly for particles,

$$\begin{aligned} \mathrm{D}_{\tau }x^{M}\mathrm{D}_{\tau }x^{N}{\mathcal {H}}_{MN}&=\dot{x}^{\mu }\dot{x}^{\nu } K_{\mu \nu }+ \left( \dot{\tilde{x}}_{\mu }-A_{\tau \mu }-B_{\mu \kappa }\dot{x}^{\kappa }\right) \nonumber \\&\quad \times \;\left( \dot{\tilde{x}}_{\nu }-A_{\tau \nu }-B_{\nu \lambda }\dot{x}^{\lambda } \right) H^{\mu \nu }\nonumber \\&\quad +\;2X^{i}_{\mu }\dot{x}^{\mu }\left( \dot{\tilde{x}}_{\nu }-A_{\tau \nu }-B_{\nu \rho }\dot{x}^{\rho }\right) Y_{i}^{\nu }\nonumber \\&\quad -\;2{\bar{X}}^{\bar{\imath }}_{\mu }\dot{x}^{\mu }\left( \dot{\tilde{x}}_{\nu }-A_{\tau \nu }-B_{\nu \rho }\dot{x}^{\rho } \right) {\bar{Y}}_{\bar{\imath }}^{\nu }. \end{aligned}$$
(2.32)

Note that, in accordance with the completeness relation (2.5), the auxiliary vector potential decomposes as

$$\begin{aligned} A_{\alpha \mu }=K_{\mu \nu }\left( H^{\nu \rho }A_{\alpha \rho }\right) +X_{\mu }^{i}\left( Y^{\rho }_{i}A_{\alpha \rho }\right) +{\bar{X}}_{\mu }^{\bar{\imath }}\left( {\bar{Y}}^{\rho }_{\bar{\imath }}A_{\alpha \rho }\right) . \end{aligned}$$
(2.33)
  • Particle dynamics.

    Integrating out \(H^{\mu \nu }A_{\tau \nu }\) gives the on-shell relation,

    $$\begin{aligned}&H^{\mu \nu }A_{\tau \nu }\equiv H^{\mu \nu }\left( \dot{\tilde{x}}_{\nu }-B_{\nu \lambda }\dot{x}^{\lambda }\right) \quad \text { or equivalently }\nonumber \\&\quad H^{\mu \nu }\left( \mathrm{D}_{\tau }\tilde{x}_{\nu }-B_{\nu \lambda } \dot{x}^{\lambda }\right) \equiv 0, \end{aligned}$$
    (2.34)

    which implies that the ‘dual’ conjugate momenta are trivial along \(D-n-{\bar{n}}\) of the \(\tilde{x}_{\mu }\) directions.

    On the other hand, integrating out the remaining components, \(Y^{\rho }_{i}A_{\tau \rho }\) and \({\bar{Y}}^{\rho }_{\bar{\imath }}A_{\tau \rho }\), we acquire constraints on the \(x^{\mu }\) coordinates,

    $$\begin{aligned} X^{i}_{\mu }\dot{x}^{\mu }\equiv 0,\quad {\bar{X}}^{\bar{\imath }}_{\mu }\dot{x}^{\mu }\equiv 0. \end{aligned}$$
    (2.35)

    Namely, the particle freezes over \(n+{\bar{n}}\) directions on the physical section formed by \(x^{\mu }\) coordinates.

  • String dynamics.

    In the string case, combining the useful identity (2.31) with the topological term in the action (2.27), we can reduce the world-sheet Lagrangian,

    $$\begin{aligned}&\textstyle {\frac{1}{4\pi \alpha ^{\prime }}} {\mathcal {L}}_{\scriptscriptstyle \mathrm{{string}}} =\textstyle {\frac{1}{2\pi \alpha ^{\prime }}} {\mathcal {L}}^{\prime }_{\scriptscriptstyle \mathrm{{string}}},\nonumber \\ {\mathcal {L}}^{\prime }_{\scriptscriptstyle \mathrm{{string}}}&= -{{\textstyle \frac{1}{2}}}\sqrt{-h}h^{\alpha \beta }\partial _{\alpha }x^{\mu } \partial _{\beta }x^{\nu } K_{\mu \nu } \nonumber \\&\quad +\;{{\textstyle \frac{1}{2}}}\epsilon ^{\alpha \beta }\partial _{\alpha }x^{\mu } \partial _{\beta }x^{\nu }B_{\mu \nu }+{{\textstyle \frac{1}{2}}}\epsilon ^{\alpha \beta } \partial _{\alpha }\tilde{x}_{\mu }\partial _{\beta }x^{\mu }\nonumber \\&\quad -\;{{\textstyle \frac{1}{2}}}\sqrt{-h}h^{\alpha \gamma }\left[ X^{i}_{\mu }\left( \partial _{\alpha }x^{\mu } +\textstyle {\frac{1}{\sqrt{-h}}}\epsilon _{\alpha }{}^{\beta } \partial _{\beta }x^{\mu }\right) \right] \nonumber \\&\quad \times \;\left( \partial _{\gamma }\tilde{x}_{\nu }-A_{\gamma \nu }-B_{\nu \rho } \partial _{\gamma }x^{\rho }\right) Y_{i}^{\nu }\nonumber \\&\quad +\;{{\textstyle \frac{1}{2}}}\sqrt{-h}h^{\alpha \gamma }\left[ {\bar{X}}^{\bar{\imath }}_{\mu }\left( \partial _{\alpha }x^{\mu }-\textstyle {\frac{1}{\sqrt{-h}}}\epsilon _{\alpha }{}^{\beta }\partial _{\beta }x^{\mu }\right) \right] \nonumber \\&\quad \times \;\left( \partial _{\gamma }\tilde{x}_{\nu }-A_{\gamma \nu }-B_{\nu \rho } \partial _{\gamma }x^{\rho }\right) {\bar{Y}}_{\bar{\imath }}^{\nu }\nonumber \\&\quad -\;{{\textstyle \frac{1}{4}}}\sqrt{-h}h^{\alpha \beta }\left( {\mathcal {C}}_{\alpha \mu } -A_{\alpha \mu }\right) \left( {\mathcal {C}}_{\beta \nu }-A_{\beta \nu }\right) H^{\mu \nu },\nonumber \\ \end{aligned}$$
    (2.36)

    where for short notation we set

    $$\begin{aligned} {\mathcal {C}}_{\alpha \mu }:=\partial _{\alpha }\tilde{x}_{\mu }-B_{\mu \nu } \partial _{\alpha }x^{\nu }+\textstyle {\frac{1}{\sqrt{-h}}} \epsilon _{\alpha }{}^{\beta }K_{\mu \nu }\partial _{\beta }x^{\nu }. \end{aligned}$$
    (2.37)

    Now, integrating out \(H^{\mu \nu }A_{\alpha \nu }\) we obtain the on-shell relation,

    $$\begin{aligned}&H^{\mu \nu }A_{\alpha \nu }\equiv H^{\mu \nu }{\mathcal {C}}_{\alpha \nu }\quad \text { or equivalently }\nonumber \\&H^{\mu \nu }\left( \mathrm{D}_{\alpha }\tilde{x}_{\mu }-B_{\mu \nu }\partial _{\alpha } x^{\nu }+\textstyle {\frac{1}{\sqrt{-h}}}\epsilon _{\alpha }{}^{\beta } K_{\mu \nu }\partial _{\beta }x^{\nu }\right) \equiv 0, \end{aligned}$$
    (2.38)

    and integrating out \(Y^{\nu }_{i}A_{\alpha \nu }\), \({\bar{Y}}^{\nu }_{\bar{\imath }}A_{\alpha \nu }\), we obtain chiral constraints,

    $$\begin{aligned}&X^{i}_{\mu }\left( \partial _{\alpha }x^{\mu }+\textstyle {\frac{1}{\sqrt{-h}}}\epsilon _{\alpha }{}^{\beta }\partial _{\beta }x^{\mu } \right) \equiv 0, \nonumber \\&\quad {\bar{X}}^{\bar{\imath }}_{\mu }\left( \partial _{\alpha }x^{\mu }-\textstyle {\frac{1}{\sqrt{-h}}}\epsilon _{\alpha }{}^{\beta }\partial _{\beta }x^{\mu } \right) \equiv 0. \end{aligned}$$
    (2.39)

    Namely, the string becomes chiral over n directions and anti-chiral over \({\bar{n}}\) directions on the section coordinatized by \(x^{\mu }\). The chirality further implies that strings which meet boundary conditions (periodic, Neumann or Dirichlet) are also frozen, or localized, over the \(n+{\bar{n}}\) directions, similarly to the particle case (2.35).

DFT-vielbeins for \((n,{\bar{n}})\) doubled-yet-gauged spacetime

In order to couple to fermions [33, 49] or to the RR-sector [50], as well as for supersymmetrizations [38, 51, 52], it is necessary to introduce a pair of DFT-vielbeins, \(V_{Ap}\) and \({\bar{V}}_{A{\bar{p}}}\), from which one can construct the projectors,

$$\begin{aligned}&P_{AB}={{\textstyle \frac{1}{2}}}({\mathcal {J}}_{AB}+{\mathcal {H}}_{AB})=V_{Ap}V_{Bq}\eta ^{pq}, \nonumber \\&\quad {\bar{P}}_{AB}={{\textstyle \frac{1}{2}}}({\mathcal {J}}_{AB}-{\mathcal {H}}_{AB})={\bar{V}}_{A{\bar{p}}}{\bar{V}}_{B{\bar{q}}} \bar{\eta }^{{\bar{p}}{\bar{q}}}, \end{aligned}$$
(2.40)

where \(\eta _{pq}\) and \(\bar{\eta }_{{\bar{p}}{\bar{q}}}\) are the two constant metrics of twofold local Lorentz symmetries for two distinct locally inertial frames, one for the left and the other for the right closed string modes [53].Footnote 5 To ensure the symmetric, orthogonal and completeness properties of the projectors (1.7), the DFT-vielbeins must satisfy their own defining properties:

$$\begin{aligned}&V_{Ap}V^{A}{}_{q}=\eta _{pq},\quad {\bar{V}}_{A{\bar{p}}}{\bar{V}}^{A}{}_{{\bar{q}}}=\bar{\eta }_{{\bar{p}}{\bar{q}}},\quad V_{Ap}{\bar{V}}^{A{\bar{p}}}=0,\nonumber \\&\quad V_{Ap}V_{B}{}^{p}+{\bar{V}}_{A{\bar{p}}}{\bar{V}}_{B}{}^{{\bar{p}}}={\mathcal {J}}_{AB}. \end{aligned}$$
(2.41)

Essentially, with \({\mathcal {H}}_{AB}=V_{Ap}V_{B}{}^{p}-{\bar{V}}_{A{\bar{p}}}{\bar{V}}_{B}{}^{{\bar{p}}}\), the DFT-vielbeins diagonalize \({\mathcal {J}}_{AB}\) and \({\mathcal {H}}_{AB}\) simultaneously, with the eigenvalues \((\eta ,+\bar{\eta })\) and \((\eta ,-\bar{\eta })\).

The main result of this subsection is the construction of the DFT-vielbeins, \(V_{Ap}\) and \({\bar{V}}_{A{\bar{p}}}\), for the general \((n,{\bar{n}})\) DFT-metric (2.2). They are given by \(2D\times (D+n-{\bar{n}})\) and \(2D\times (D-n+{\bar{n}})\) matrices, respectively,

$$\begin{aligned} V_{Ap}= & {} \frac{1}{\sqrt{2}}\left( \begin{array}{c}{\mathcal {Y}}_{p}{}^{\mu }\\ {\mathcal {X}}_{\nu }{}^{q}\eta _{qp}+B_{\nu \sigma }{\mathcal {Y}}_{p}{}^{\sigma } \end{array}\right) ,\nonumber \\ {\bar{V}}_{A{\bar{p}}}= & {} \frac{1}{\sqrt{2}}\left( \begin{array}{c}{\bar{{\mathcal {Y}}}}_{{\bar{p}}}{}^{\mu }\\ {\bar{{\mathcal {X}}}}_{\nu }{}^{{\bar{q}}}\bar{\eta }_{{\bar{q}}{\bar{p}}}+B_{\nu \sigma }{\bar{{\mathcal {Y}}}}_{{\bar{p}}}{}^{\sigma } \end{array}\right) . \end{aligned}$$
(2.42)

Here \({\mathcal {X}}_{\mu }{}^{p}\), \({\mathcal {Y}}_{p}{}^{\mu }\), \({\bar{{\mathcal {X}}}}_{\nu }{}^{{\bar{q}}}\) and \({\bar{{\mathcal {Y}}}}_{{\bar{q}}}{}^{\nu }\) are, respectively, \(D\times (D+n-{\bar{n}})\), \((D+n-{\bar{n}})\times D\), \(D\times (D-n+{\bar{n}})\) and \((D-n+{\bar{n}})\times D\) matrices, such that \(1\le p\le D+n-{\bar{n}}\) and \(1\le {\bar{p}}\le D-n+{\bar{n}}\). Explicitly, with the smaller range of indices, \(1\le a,\bar{a}\le D{-n-{\bar{n}}}\) and \(1\le i\le n\), \(~1\le \bar{\imath }\le {\bar{n}}\) as before, the matrices read

$$\begin{aligned} \begin{array}{lll}&\begin{array}{l} {\mathcal {X}}_{\mu }{}^{p}:=\left( \begin{array}{lll}k_{\mu }{}^{a}&{} X_{\mu }^{i}&{} X_{\mu }^{j}\end{array}\right) ,\\ {\bar{{\mathcal {X}}}}_{\mu }{}^{{\bar{p}}}:=\left( \begin{array}{lll}{\bar{k}}_{\mu }{}^{\bar{a}} &{}\,{\bar{X}}_{\mu }^{\bar{\imath }}&{} \,{\bar{X}}_{\mu }^{\bar{\jmath }}\end{array}\right) , \end{array}&{}\quad \\ &{}{\mathcal {Y}}_{p}{}^{\mu }:=\left( \begin{array}{c}h_{a}{}^{\mu }\\ Y^{\mu }_{i}\\ Y^{\mu }_{j}\end{array}\right) ,&{}\quad \quad \\ &{} {\bar{{\mathcal {Y}}}}_{{\bar{p}}}{}^{\mu }:=\left( \begin{array}{c}\bar{h}_{\bar{a}}{}^{\mu }\\ {\bar{Y}}^{\mu }_{\bar{\imath }}\\ {\bar{Y}}^{\mu }_{\bar{\jmath }}\end{array}\right) , \end{array} \end{aligned}$$
(2.43)

where \(\{h_{a}{}^{\mu },k_{\nu }{}^{b}\}\) and \(\{\bar{h}_{\bar{a}}{}^{\mu },{\bar{k}}_{\nu }{}^{\bar{b}}\}\) are two sets of the “square-roots” of \(H^{\mu \nu }\) and \(K_{\mu \nu }\),

$$\begin{aligned} H^{\mu \nu }= & {} \eta ^{ab}h_{a}{}^{\mu }h_{b}{}^{\nu }= -\bar{\eta }^{\bar{a}\bar{b}}\bar{h}_{\bar{a}}{}^{\mu }\bar{h}_{\bar{b}}{}^{\nu }, \nonumber \\ K_{\mu \nu }= & {} k_{\mu }{}^{a}k_{\nu }{}^{b}\eta _{ab}= -{\bar{k}}_{\mu }{}^{\bar{a}}{\bar{k}}_{\nu }{}^{\bar{b}}\bar{\eta }_{\bar{a}\bar{b}}. \end{aligned}$$
(2.44)

The ‘total’ twofold local Lorentz symmetry group is clearly \(\mathbf {Spin}(t+n,s+n)\times \mathbf {Spin}(s+{\bar{n}},t+{\bar{n}})\), with \(t+s+n+{\bar{n}}=D\), where (ts) is the signature of \(H^{\mu \nu }\) and \(K_{\mu \nu }\). The corresponding constant metrics are \(\eta _{pq}\) and \(\bar{\eta }_{{\bar{p}}{\bar{q}}}\), respectively, while \(\eta _{ab}\) and \(\bar{\eta }_{\bar{a}\bar{b}}\) are \((t+s)\times (t+s)\) sub-blocks of them, of which the signatures are numerically opposite to each other [18],

$$\begin{aligned} \eta _{pq}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c}\eta _{ab}&{}{0}&{}{0}\\ {0}&{}-\delta _{ij}&{}{0}\\ {0}&{}{0}&{}+\delta _{ij}\end{array}\right) ,\nonumber \\ \eta _{ab}= & {} \text{ diag }(\underbrace{-\,-\,\ldots \, -\,-}_{t} \,\underbrace{+\,+\,\ldots \,+\,+}_{s}),\nonumber \\ \bar{\eta }_{{\bar{p}}{\bar{q}}}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} \bar{\eta }_{\bar{a}\bar{b}}&{}{0}&{}{0}\\ {0}&{}+\delta _{\bar{\imath }\bar{\jmath }}&{}{0}\\ {0}&{}{0}&{}-\delta _{\bar{\imath }\bar{\jmath }}\end{array}\right) ,\nonumber \\ \bar{\eta }_{\bar{a}\bar{b}}= & {} \text{ diag }(\underbrace{+\,+\,\ldots \, +\,+}_{t}\,\underbrace{-\,-\,\ldots \,-\,-}_{s}). \end{aligned}$$
(2.45)

There are defining properties of \(\{h_{a}{}^{\mu },k_{\nu }{}^{b}\}\) and \(\{\bar{h}_{\bar{a}}{}^{\mu },{\bar{k}}_{\nu }{}^{\bar{b}}\}\), in accordance with (2.4) and (2.5):

$$\begin{aligned}&h_{a}{}^{\mu }X_{\mu }^{i}=0,\quad h_{a}{}^{\mu }{\bar{X}}_{\mu }^{\bar{\imath }}=0,\quad Y_{i}^{\mu }k_{\mu }{}^{a}=0,\quad {\bar{Y}}_{\bar{\imath }}^{\mu }k_{\mu }{}^{a}=0,\nonumber \\&\bar{h}_{\bar{a}}{}^{\mu }X_{\mu }^{i}=0,\quad \bar{h}_{\bar{a}}{}^{\mu }{\bar{X}}_{\mu }^{\bar{\imath }}=0,\quad Y_{i}^{\mu }{\bar{k}}_{\mu }{}^{\bar{a}}=0,\quad {\bar{Y}}_{\bar{\imath }}^{\mu }{\bar{k}}_{\mu }{}^{\bar{a}}=0,\nonumber \\&k_{\mu }{}^{a}h_{a}{}^{\nu }+X_{\mu }^{i}Y_{i}^{\nu } +{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{Y}}_{\bar{\imath }}^{\nu }=\delta _{\mu }{}^{\nu },\quad h_{a}{}^{\mu }k_{\mu }{}^{b}=\delta _{a}{}^{b},\nonumber \\&{\bar{k}}_{\mu }{}^{\bar{a}}\bar{h}_{\bar{a}}{}^{\nu }+X_{\mu }^{i}Y_{i}^{\nu } +{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{Y}}_{\bar{\imath }}^{\nu }=\delta _{\mu }{}^{\nu },\quad \bar{h}_{\bar{a}}{}^{\mu }{\bar{k}}_{\mu }{}^{\bar{b}}=\delta _{\bar{a}}{}^{\bar{b}}.\nonumber \\ \end{aligned}$$
(2.46)

It follows that

$$\begin{aligned} {\mathcal {X}}_{\mu }{}^{p}{\mathcal {Y}}_{p}{}^{\nu }= & {} \delta _{\mu }{}^{\nu }+X_{\mu }^{i}Y_{i}^{\nu } -{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{Y}}_{\bar{\imath }}^{\nu } ,\nonumber \\ {\bar{{\mathcal {X}}}}_{\mu }{}^{{\bar{p}}}{\bar{{\mathcal {Y}}}}_{{\bar{p}}}{}^{\nu }= & {} \delta _{\mu }{}^{\nu } -X_{\mu }^{i}Y_{i}^{\nu }+{\bar{X}}_{\mu }^{\bar{\imath }}{\bar{Y}}_{\bar{\imath }}^{\nu },\nonumber \\ {\mathcal {Y}}_{p}{}^{\lambda }{\mathcal {X}}_{\lambda }{}^{q}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} \delta _{a}{}^{b}&{}0&{}0\\ 0&{}\delta _{i}{}^{k}&{}\delta _{i}{}^{l}\\ 0&{}\delta _{j}{}^{k}&{}\delta _{j}{}^{l} \end{array}\right) ,\nonumber \\ {\bar{{\mathcal {Y}}}}_{{\bar{p}}}{}^{\lambda }{\bar{{\mathcal {X}}}}_{\lambda }{}^{{\bar{q}}}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} \delta _{\bar{a}}{}^{\bar{b}}&{}0&{}0\\ 0&{}\delta _{\bar{\imath }}{}^{{\bar{k}}}&{}\delta _{\bar{\imath }}{}^{{\bar{l}}}\\ 0&{}\delta _{\bar{\jmath }}{}^{{\bar{k}}}&{}\delta _{\bar{\jmath }}{}^{{\bar{l}}} \end{array}\right) , \end{aligned}$$
(2.47)

and

$$\begin{aligned} P_{AB}= & {} \left( \begin{array}{c@{\quad }c} {{\textstyle \frac{1}{2}}}H&{}Y_{i}(X^{i})^{T}+{{\textstyle \frac{1}{2}}}H(K-B)\\ X^{i}(Y_{i})^{T}+{{\textstyle \frac{1}{2}}}(K+B)H&{}\quad {{\textstyle \frac{1}{2}}}(K+B)H(K-B)+BY_{i}(X^{i})^{T}-X^{i}(Y_{i})^{T}B\end{array}\right) , \nonumber \\ {\bar{P}}_{AB}= & {} \left( \begin{array}{c@{\quad }c} -{{\textstyle \frac{1}{2}}}H&{}{\bar{Y}}_{\bar{\imath }}({\bar{X}}^{\bar{\imath }})^{T}+{{\textstyle \frac{1}{2}}}H(K+B)\\ {\bar{X}}^{\bar{\imath }}({\bar{Y}}_{\bar{\imath }})^{T}+{{\textstyle \frac{1}{2}}}(K-B)H&{}\quad -{{\textstyle \frac{1}{2}}}(K-B)H(K+B)+B{\bar{Y}}_{\bar{\imath }}({\bar{X}}^{\bar{\imath }})^{T}-{\bar{X}}^{\bar{\imath }} ({\bar{Y}}_{\bar{\imath }})^{T}B\end{array}\right) , \end{aligned}$$
(2.48)

where the superscript \(\scriptstyle {T}\) converts column vectors to row ones. As expected, \(P_{AB}\) and \({\bar{P}}_{AB}\) are, respectively, free of the barred and unbarred variables, \(\{{\bar{X}}^{\bar{\imath }},{\bar{Y}}_{\bar{\jmath }}\}\) and \(\{X^{i},Y_{j}\}\).

In a parallel manner to (2.11), the B-field contributes to the DFT-vielbeins through \(\mathbf {O}(D,D)\) multiplications,

$$\begin{aligned} V_{Mp}= & {} \frac{1}{\sqrt{2}}\left( \begin{array}{c@{\quad }c}1&{}0\\ B&{}1\end{array}\right) \left( \begin{array}{c}{\mathcal {Y}}^{T}\\ {\mathcal {X}}\eta \end{array}\right) ,\nonumber \\ {\bar{V}}_{M{\bar{p}}}= & {} \frac{1}{\sqrt{2}}\left( \begin{array}{c@{\quad }c}1&{}0\\ B&{}1\end{array}\right) \left( \begin{array}{c}{\bar{{\mathcal {Y}}}}^{T}\\ {\bar{{\mathcal {X}}}}\bar{\eta }\end{array}\right) . \end{aligned}$$
(2.49)

For consistency, the trace of the DFT-metric reads

$$\begin{aligned} {\mathcal {H}}_{A}{}^{A}= & {} \eta _{p}{}^{p}-\bar{\eta }_{{\bar{p}}}{}^{{\bar{p}}}=(t+s+2n) -(t+s+2{\bar{n}})\nonumber \\= & {} (D+n-{\bar{n}})-(D-n+{\bar{n}})=2(n-{\bar{n}}). \end{aligned}$$
(2.50)

The symmetry of the DFT-metric (2.16) extends to DFT-vielbeins:

$$\begin{aligned} Y_{i}^{\mu }&\longmapsto Y_{i}^{\mu }+H^{\mu \nu }V_{\nu i},\nonumber \\ {\bar{Y}}_{\bar{\imath }}^{\mu }&\longmapsto {\bar{Y}}_{\bar{\imath }}^{\mu } +H^{\mu \nu }{\bar{V}}_{\nu \bar{\imath }},\nonumber \\ k_{\mu }{}^{a}&\longmapsto k_{\mu }{}^{a} -X_{\mu }^{i}\eta ^{ab}h_{b}{}^{\nu }V_{\nu i} -{\bar{X}}_{\mu }^{\bar{\imath }}\eta ^{ab}h_{b}{}^{\nu }{\bar{V}}_{\nu \bar{\imath }},\nonumber \\ {\bar{k}}_{\mu }{}^{\bar{a}}&\longmapsto {\bar{k}}_{\mu }{}^{\bar{a}} -X_{\mu }^{i}\bar{\eta }^{\bar{a}\bar{b}}\bar{h}_{\bar{b}}{}^{\nu }V_{\nu i} -{\bar{X}}_{\mu }^{\bar{\imath }}\bar{\eta }^{\bar{a}\bar{b}}\bar{h}_{\bar{b}}{}^{\nu }{\bar{V}}_{\nu \bar{\imath }},\nonumber \\ B_{\mu \nu }&\longmapsto B_{\mu \nu } -2X^{i}_{[\mu }V_{\nu ]i}+2{\bar{X}}^{\bar{\imath }}_{[\mu }{\bar{V}}_{\nu ]\bar{\imath }}\nonumber \\&\qquad \;+\,2X^{i}_{[\mu }{\bar{X}}^{\bar{\imath }}_{\nu ]}\left( Y_{i}^{\rho }{\bar{V}}_{\rho \bar{\imath }} +{\bar{Y}}_{\bar{\imath }}^{\rho }V_{\rho i}+V_{\rho i}H^{\rho \sigma } {\bar{V}}_{\sigma \bar{\imath }}\right) . \end{aligned}$$
(2.51)

As seen from the doubled-yet-gauged actions for particle and string (2.32), (2.36), as well as the coupling to a scalar field (2.9), it is not the full signatures of the spin group,

$$\begin{aligned} \mathbf {Spin}(t+n,s+n)\times \mathbf {Spin}(s+{\bar{n}},t+{\bar{n}}), \end{aligned}$$
(2.52)

but the signature of \(K_{\mu \nu }\) and \(H^{\mu \nu }\), i.e. (ts), that matters for unitarity. The choice of \(t=1\) then amounts to the usual Minkowskian spacetime.

Kaluza–Klein ansatz for DFT

The ordinary Kaluza–Klein ansatz for a Riemannian metric can be ‘block-diagonalized’,

$$\begin{aligned}&\hat{g}={{\left( \begin{array}{c@{\quad }c}g^{\prime }+aga^{T} &{} ag\\ ga^{T}&{} g\end{array} \right) }}=\exp \left[ \hat{a}\right] {{\left( \begin{array}{c@{\quad }c} g^{\prime }&{}0\\ 0&{} g\end{array}\right) }}\exp \left[ \hat{a}^{T}\right] \nonumber \\&\quad \text{ where } \quad \hat{a}_{\hat{\mu }}{}^{\hat{\nu }} ={{\left( \begin{array}{c@{\quad }c} 0&{}a_{\mu ^{\prime }}{}^{\nu }\\ 0 &{}0\end{array}\right) }}. \end{aligned}$$
(2.53)

In a similar fashion, we propose the Kaluza–Klein ansatz for the DFT-metric, \(\hat{{\mathcal {H}}}_{{\hat{M}}{\hat{N}}}\),

$$\begin{aligned} \hat{{\mathcal {H}}}=\exp \left[ {\hat{W}}\,\right] \left( \begin{array}{c@{\quad }c} {\mathcal {H}}^{\prime }&{} 0 \\ 0 &{} {\mathcal {H}}\end{array}\right) \exp \left[ {\hat{W}}^{T}\,\right] , \end{aligned}$$
(2.54)

for which we decompose \(\hat{D}=D^{\prime }+D\), such that

$$\begin{aligned} \begin{array}{ll} \mathbf {O}(\hat{D},\hat{D})~\rightarrow ~ \mathbf {O}(D^{\prime },D^{\prime })\times \mathbf {O}(D,D),&{}\quad {\hat{\mathcal {J}}}=\left( \begin{array}{c@{\quad }c}{\mathcal {J}}^{\prime }&{}0\\ 0&{}{\mathcal {J}}\end{array}\right) , \end{array} \end{aligned}$$
(2.55)

and we set an off-block-diagonal \(\mathfrak {so}(D,D)\) element,

$$\begin{aligned}&{\hat{W}}= \left( \begin{array}{c@{\quad }c} 0 &{} -W \\ {\bar{W}}&{} 0 \end{array} \right) \in \mathfrak {so}(D,D), \nonumber \\&{\bar{W}}_{M}{}^{M^{\prime }} := W^{M^{\prime }}{}_{M}= {\mathcal {J}}_{MN}W_{N^{\prime }}{}^{N} {\mathcal {J}}^{\prime N^{\prime }M^{\prime }}. \end{aligned}$$
(2.56)

Further, we impose a constraint on the \(2D^{\prime }\times 2D\) matrix, \(W_{M^{\prime }}{}^{N}\),

$$\begin{aligned} {\bar{W}}W=0 \quad \text { or explicitly } \; W_{L^{\prime }M}W^{L^{\prime }N}=0, \end{aligned}$$
(2.57)

which sets half of its components trivial. At least for the Riemannian, i.e. (0, 0) case, this constraint makes the counting of the degrees of freedom consistent: \(g_{\mu \nu }\) and \(B_{\mu \nu }\) have \(D^{2}\) degrees of freedom, while \(W_{M^{\prime }}{}^{N}\) has \(2D^{\prime }D\) degrees, such that

$$\begin{aligned} \hat{D}^{2}=(D^{\prime }+D)^{2}=D^{\prime }{}^{2}+D^{2}+2D^{\prime }D, \end{aligned}$$
(2.58)

matching the degrees of freedom between \(\hat{{\mathcal {H}}}\) and \(\{{\mathcal {H}}^{\prime },{\mathcal {H}},W\}\). Essentially, \(\hat{g}_{\mu ^{\prime }\nu }\) and \(\hat{B}_{\mu ^{\prime }\nu }\) constitute \(W_{M^{\prime }}{}^{N}\).

Explicitly, we have \({\hat{W}}^{3}=0\) and

$$\begin{aligned} \hat{{\mathcal {H}}}=\left( \begin{array}{c@{\quad }c} (1-{{\textstyle \frac{1}{2}}}W{\bar{W}}){\mathcal {H}}^{\prime }(1-{{\textstyle \frac{1}{2}}}W{\bar{W}})^{T}+W{\mathcal {H}}W^{T} &{} \quad -W{\mathcal {H}}+(1-{{\textstyle \frac{1}{2}}}W{\bar{W}}){\mathcal {H}}^{\prime }{\bar{W}}^{T} \\ -{\mathcal {H}}W^{T}+{\bar{W}}{\mathcal {H}}^{\prime }(1-{{\textstyle \frac{1}{2}}}W{\bar{W}})^{T} &{} \quad {\mathcal {H}}+{\bar{W}}{\mathcal {H}}^{\prime }{\bar{W}}^{T} \end{array} \right) , \end{aligned}$$
(2.59)

which is classified by four non-negative integers: \((n,{\bar{n}})\) for \({\mathcal {H}}_{AB}\) and \((n^{\prime },{\bar{n}}^{\prime })\) for \({\mathcal {H}}^{\prime }_{A^{\prime }B^{\prime }}\), with the total trace, \(\hat{{\mathcal {H}}}_{\hat{A}}{}^{\hat{A}}=2(n+n^{\prime }-{\bar{n}}-{\bar{n}}^{\prime })\).

Especially, in the maximally non-Riemannian case of \({\mathcal {H}}^{\prime }={\mathcal {J}}^{\prime }\), i.e. \((n^{\prime },{\bar{n}}^{\prime })=(D^{\prime },0)\), the above expression dramatically simplifies

$$\begin{aligned} \hat{{\mathcal {H}}}=\left( \begin{array}{c@{\quad }c} {\mathcal {J}}^{\prime }-2W{\bar{P}}W^{T}\,&{}\,2W{\bar{P}}\\ 2{\bar{P}}W^{T}\,&{}\,{\mathcal {H}}\end{array}\right) . \end{aligned}$$
(2.60)

Intriguingly, the resulting field content, \({\mathcal {H}}_{AB}, {\bar{P}}_{AB}W_{A^{\prime }}{}^{B}\), coincides with the ansatz for heterotic DFT proposed by Hohm et al. [54]. We leave it as a future work to explore the tantalizing connection between heterotic string and non-Riemannian doubled-yet-gauged spacetime, possibly using the Scherk–Schwartz reduction scheme in DFT [52, 55,56,57,58,59,60,61,62,63].

Applications

The case of (0, 0) admits a well-defined Riemannian metric and hence corresponds to Riemannian geometry, or to “generalized geometry” [64,65,66,67,68,69] when equipped with the pair of DFT-vielbeins. In this section, we discuss various applications of other \((n,{\bar{n}})\) backgrounds and identify the corresponding geometries.

Maximally non-Riemannian (D, 0): Siegel’s chiral string

In the maximally non-Riemannian case of (D, 0), with \(i=1,2,\ldots , D\), we can view \(X^{i}_{\mu }\) as a non-degenerate \(D\times D\) square matrix. Then, from (2.7) and

$$\begin{aligned} \left( X^{j}_{\lambda }Y_{j}^{\mu }\right) X^{i}_{\mu } =X^{i}_{\lambda }, \end{aligned}$$
(3.1)

we conclude that \(X^{j}_{\lambda }Y_{j}^{\mu }\) is actually an identity,

$$\begin{aligned} X^{j}_{\lambda }Y_{j}^{\mu }=\delta _{\lambda }{}^{\mu }. \end{aligned}$$
(3.2)

Thus, in the case of (D, 0), we have

$$\begin{aligned} {\mathcal {J}}_{AB}={\mathcal {H}}_{AB}=P_{AB},\quad {\bar{P}}_{AB}=0. \end{aligned}$$
(3.3)

The corresponding DFT-vielbein, \(V_{Ap}\) (2.42) and the \(\mathbf {Spin}(D,D)\) metric are also \(2D\times 2D\) square matrices,

$$\begin{aligned} \begin{array}{ll} V_{Ap}=\textstyle {\frac{1}{\sqrt{2}}}\left( \begin{array}{rr} 1&{}1\\ -1&{}1 \end{array}\right) ,&{}\quad \eta _{pq}=\left( \begin{array}{c@{\quad }c}-\delta _{ij} &{} 0 \\ 0 &{} +\delta _{ij}\end{array}\right) . \end{array} \end{aligned}$$
(3.4)

On the other hand, \({\bar{V}}_{A{\bar{p}}}\) is trivial.

The resulting string action is completely chiral on the D-dimensional section (2.36) [20],

$$\begin{aligned}&S_{\scriptscriptstyle \mathrm{{string}}}={\textstyle {\frac{1}{4\pi \alpha ^{\prime }}}}{{\int }}\mathrm{d}^{2}\sigma ~~\epsilon ^{\alpha \beta } \partial _{\alpha }\tilde{x}_{\mu }\partial _{\beta }x^{\mu },\nonumber \\&\partial _{\alpha }x^{\mu }+\textstyle {\frac{1}{\sqrt{-h}}} \epsilon _{\alpha }{}^{\beta }\partial _{\beta }x^{\mu }=0. \end{aligned}$$
(3.5)

From the conventional (0, 0) set-up, noting the sign difference,

$$\begin{aligned} {\mathcal {J}}_{AB}= & {} V_{A}{}^{p}V_{B}{}^{q}\eta _{pq} +{\bar{V}}_{A}{}^{{\bar{p}}}{\bar{V}}_{B}{}^{{\bar{q}}}\bar{\eta }_{{\bar{p}}{\bar{q}}}, \nonumber \\ {\mathcal {H}}_{AB}= & {} V_{A}{}^{p}V_{B}{}^{q}\eta _{pq} -{\bar{V}}_{A}{}^{{\bar{p}}}{\bar{V}}_{B}{}^{{\bar{q}}}\bar{\eta }_{{\bar{p}}{\bar{q}}}, \end{aligned}$$
(3.6)

we may regard the substitution of the \(\mathbf {O}(D,D)\) invariant metric, \({\mathcal {J}}_{AB}\), into the DFT-metric, \({\mathcal {H}}_{AB}\), inside the doubled-yet-gauged string action (2.27) as the flipping of the spin group signature,

$$\begin{aligned} \bar{\eta }_{{\bar{p}}{\bar{q}}} \longrightarrow - \bar{\eta }_{{\bar{p}}{\bar{q}}}, \end{aligned}$$
(3.7)

such that \(\eta _{pq}\) and \(-\bar{\eta }_{{\bar{p}}{\bar{q}}}\) assume not opposite (as in (2.45)) but rather identical signatures. That is to say, there are no right modes: only left modes exist. This is consistent with (3.5), and it realizes the chiral string theory à la Siegel [70]Footnote 6 in a rather geometric set-up.

\(D=10,\) (3, 3): non-Riemannian dimensional reduction from ten to four

If we set \(n={\bar{n}}\), then the DFT-metric is traceless and the two spin groups become commonly D-dimensional,

$$\begin{aligned}&\mathbf {Spin}(t+n,s+n)\times \mathbf {Spin}(s+n,t+n) \quad \text{ where } \nonumber \\&\quad t+s+2n=D. \end{aligned}$$
(3.8)

Thus, the maximally supersymmetric \(D=10\) DFT [38] and the doubled-yet-gauged Green–Schwarz superstring [22], both of which assume the Minkowskian spin group, \(\mathbf {Spin}(1,9)\times \mathbf {Spin}(9,1)\), can accommodate (0, 0) and (1, 1). However, the theories constructed in [22, 38] can be readily generalized to an arbitrary signature, \(\mathbf {Spin}(\hat{t},\hat{s})\times \mathbf {Spin}(\hat{s},\hat{t})\), with \(\hat{t}+\hat{s}=10\), by relaxing the Majorana condition on the spinors and employing their charge conjugations only, without involving the complex Dirac conjugations. In this case, the theory can describe (nn) non-Riemannian doubled-yet-gauged spacetime with \(n=0,1,2,\ldots ,\min \left( \hat{t},\hat{s}\right) \).

An interesting choice then appears to be \(\mathbf {Spin}(4,6)\times \mathbf {Spin}(6,4)\). Such a choice can encompass six-dimensional (3, 3) non-Riemannian ‘internal’ spacetime, while maintaining the ordinary four-dimensional Minkowskian ‘external’ spacetime. As analyzed in Sect. 2.2, point particles and strings freeze on the (3, 3) internal spacetime and this may imply a natural dimensional reduction of string theory from ten to four, alternative to the conventional compactification on ‘small’ Riemannian manifolds; e.g. \(\text{ CY }_{3}\). The latter will be of interest in order to analyse the Killing spinor equations [38] for the \(D=10\) (3, 3) DFT-vielbeins (2.42). Certainly, constant ‘flat’ backgrounds are maximally supersymmetric.

(1, 1): non-relativistic limit à la Gomis–Ooguri

In this subsection, we identify (1, 1) as the non-relativistic limit à la Gomis–Ooguri [23]. We start by considering a generic Riemannian metric which depends explicitly on the speed of light, c,

$$\begin{aligned} g_{\mu \nu }=-c^{2}T_{\mu }T_{\nu }(1-S^{\rho }S^{\sigma } \Phi _{\rho \sigma })+2cT_{(\mu }\Phi _{\nu )\rho }S^{\rho }+\Phi _{\mu \nu }, \end{aligned}$$
(3.9)

where \(T_{\mu }\) and \(S^{\nu }\) are orthogonal time-like and space-like vectors,

$$\begin{aligned} T_{\mu }S^{\mu }=0. \end{aligned}$$
(3.10)

Essentially, (3.9) is the ‘covariantized’ form of the ordinary Kaluza–Klein ansatz for the Riemannian metric (2.53) as

$$\begin{aligned}&g_{\mu \nu }=(\delta _{\mu }{}^{\rho }+cT_{\mu }S^{\rho }) (\delta _{\nu }{}^{\sigma }+cT_{\nu }S^{\sigma }) (-c^{2}T_{\rho }T_{\sigma }+\Phi _{\rho \sigma }),\nonumber \\&\quad \left[ \exp (cT{\cdot S})\right] _{\mu }{}^{\nu }= \delta _{\mu }{}^{\nu }+cT_{\mu }S^{\nu }. \end{aligned}$$
(3.11)

The inverse of the metric is then given by

$$\begin{aligned} g^{\mu \nu }&=\Upsilon ^{\mu \nu }-S^{\mu }S^{\nu }+\textstyle {\frac{2}{c}} N^{(\mu }S^{\nu )}-\textstyle {\frac{1}{c^{2}}}N^{\mu }N^{\nu }\nonumber \\&=(\delta ^{\mu }{}_{\rho }-cS^{\mu }T_{\rho }) (\delta ^{\nu }{}_{\sigma }-cS^{\nu }T_{\sigma }) (-\textstyle {\frac{1}{c^{2}}}N^{\rho }N^{\sigma }+\Upsilon ^{\rho \sigma }), \end{aligned}$$
(3.12)

where the variables, \(N^{\nu }\) and \(\Upsilon ^{\mu \nu }\), meet by construction,Footnote 7

$$\begin{aligned}&T_{\mu }N^{\mu }=1,\quad T_{\mu }\Upsilon ^{\mu \nu }=0,\quad N^{\mu }\Phi _{\mu \nu }=0,\nonumber \\&\quad T_{\mu }N^{\nu }+\Phi _{\mu \rho }\Upsilon ^{\rho \nu }=\delta _{\mu }{}^{\nu }. \end{aligned}$$
(3.13)

Now, we introduce an ansatz for the B-field in a similar manner,

$$\begin{aligned} B_{\mu \nu }=2cT_{[\mu }B_{\nu ]}+B_{\mu \nu }^{\scriptscriptstyle {0}}, \end{aligned}$$
(3.14)

and we require that the Riemannian DFT-metric (1.9) should be non-singular in the non-relativistic, large c limit. In (3.14), without loss of generality we may set \(B_{\mu }\) to be orthogonal to \(N^{\nu }\), i.e.  \(N^{\mu }B_{\mu }=0\). Further, \(B_{\mu \nu }^{\scriptscriptstyle {0}}\) denotes the zeroth order in c, which is arbitrary and should survive once the limit is taken, as expected from the ‘Abelian’ nature of the B-field from (2.11) and (2.12).

Clearly in the limit of \(c\rightarrow \infty \), the inverse, \(g^{\mu \nu }\), is regular. We only need to ensure both \(g^{-1}B\) and \(g-Bg^{-1}B\) to be non-singular. The former implies

$$\begin{aligned}&\left( \Upsilon ^{\mu \nu }-S^{\mu }S^{\nu }\right) B_{\mu }=0, {\lim _{c\rightarrow \infty }} g^{\mu \rho }B_{\rho \nu }=(\Upsilon ^{\mu \rho }-S^{\mu }S^{\rho }) B_{\rho \nu }^{\scriptscriptstyle {0}} \nonumber \\&\quad +\;S^{\mu }B_{\nu }-(S^{\rho } B_{\rho })N^{\mu }T_{\nu }. \end{aligned}$$
(3.15)

In turn, \(Bg^{-1}B\) cannot be quadratically singular, and hence, for the regularity of \(g-Bg^{-1}B\), the leading power of g must be first order in c, i.e. the apparent second order term in (3.9) must be trivial,

$$\begin{aligned} S^{\rho }S^{\sigma }\Phi _{\rho \sigma }=1. \end{aligned}$$
(3.16)

Therefore, the nontrivial cancellation of diverging terms inside \(g-Bg^{-1}B\) takes place at the first order, reading

$$\begin{aligned}&c\times \Big [\left( \Phi _{\mu \rho }S^{\rho }-B_{\rho }S^{\rho } B_{\mu }\right) T_{\nu } \nonumber \\&\quad +\;\left( \Phi _{\nu \rho }S^{\rho }-B_{\rho } S^{\rho }B_{\nu }\right) T_{\mu }\,\Big ]=0. \end{aligned}$$
(3.17)

Contraction of the quantity inside the square bracket with \(N^{\nu }\) gives

$$\begin{aligned} B_{\rho }S^{\rho }B_{\mu }=\Phi _{\mu \rho }S^{\rho }. \end{aligned}$$
(3.18)

Hence from (3.16) and (3.18), we obtain

$$\begin{aligned} B_{\rho }S^{\rho }=\pm 1. \end{aligned}$$
(3.19)

It follows that \(g-Bg^{-1}B\) is non-singular as

$$\begin{aligned}&{\lim _{c\rightarrow \infty }}\left( g_{\mu \nu }-B_{\mu \rho }g^{\rho \sigma }B_{\sigma \nu }\right) \nonumber \\&\quad =\Phi _{\mu \nu }-B_{\mu }B_{\nu }- B^{\scriptscriptstyle {0}}_{\mu \rho }(\Upsilon ^{\rho \sigma } -S^{\rho }S^{\sigma })B_{\sigma \nu }^{\scriptscriptstyle {0}}\nonumber \\&\qquad \mp \,(T_{\mu }N^{\sigma }-\Phi _{\mu \rho }S^{\rho }S^{\sigma }) B^{\scriptscriptstyle {0}}_{\sigma \nu }\nonumber \\&\qquad \pm \, B^{\scriptscriptstyle {0}}_{\mu \sigma }(N^{\sigma } T_{\nu }-S^{\sigma }S^{\rho }\Phi _{\rho \nu }). \end{aligned}$$
(3.20)

After all, the DFT-metric becomes completely regular,

$$\begin{aligned} {\mathcal {H}}_{AB}= & {} \left( \begin{array}{c@{\quad }c}1&{}0\\ B^{\scriptscriptstyle {0}}&{}1\end{array}\right) \nonumber \\&\times \left( \begin{array}{c@{\quad }c}\Upsilon -SS^{T}~&{}~ \pm \left( SS^{T}\Phi -NT^{T}\right) \\ \pm \left( \Phi S S^{T}-TN^{T}\right) ~&{}~ \Phi -\Phi S S^{T}\Phi \end{array}\right) \nonumber \\&\times \left( \begin{array}{c@{\quad }c}1&{}-B^{\scriptscriptstyle {0}}\\ 0&{}1\end{array}\right) , \end{aligned}$$
(3.21)

which can easily and precisely be identified as the (1, 1) type of the classification (2.2) as

$$\begin{aligned}&\Upsilon ^{\mu \nu }-S^{\mu }S^{\nu }\equiv H^{\mu \nu },\quad \Phi _{\mu \nu }-\Phi _{\mu \rho }S^{\rho }\Phi _{\nu \sigma } S^{\sigma }\equiv K_{\mu \nu },\nonumber \\&\quad \big \{T_{\mu },\, \Phi _{\nu \rho }S^{\rho }\big \}\equiv \big \{X_{\mu },\,{\bar{X}}_{\nu }\big \}. \end{aligned}$$
(3.22)

As demonstrated in [20], a constant flat background belonging to this type generates the Gomis–Ooguri non-relativistic string [23] (see also [22] for its Green–Schwarz superstring extension). Thus, a generic (1, 1) DFT-metric provides a curved spacetime generalization of the non-relativistic string.

\((D-1,0)\): ultra-relativistic or Carroll

The Riemannian metric (3.9) in the previous section defines the proper length. Rescaling the metric by an overall factor of \(c^{-2}\), it becomes the Riemannian metric for the proper time:

$$\begin{aligned} g_{\mu \nu }= & {} -T_{\mu }T_{\nu }(1-S^{\rho }S^{\sigma } \Phi _{\rho \sigma }) +\frac{2}{c}T_{(\mu }\Phi _{\nu )\rho }S^{\rho }+\frac{1}{c^{2}} \Phi _{\mu \nu },\nonumber \\ g^{\mu \nu }= & {} c^{2}\left( \Upsilon ^{\mu \nu }-S^{\mu }S^{\nu }\right) +2cN^{(\mu }S^{\nu )}-N^{\mu }N^{\nu }, \end{aligned}$$
(3.23)

where the variables should satisfy (3.10) and (3.13), which we recall here:

$$\begin{aligned}&T_{\mu }S^{\mu }=0,\quad T_{\mu }N^{\mu }=1,\quad T_{\mu }\Upsilon ^{\mu \nu }=0,\nonumber \\&N^{\mu }\Phi _{\mu \nu }=0,\quad T_{\mu }N^{\nu }+\Phi _{\mu \rho }\Upsilon ^{\rho \nu }=\delta _{\mu }{}^{\nu }. \end{aligned}$$
(3.24)

Clearly, the expression of \(g^{\mu \nu }\) in (3.23) indicates the possibility of taking a small c i.e.  ultra-relativistic limit, as the inverse remains non-singular, yet degenerate having rank one,

$$\begin{aligned} {\lim _{c\rightarrow 0}}\, g^{\mu \nu }=-N^{\mu }N^{\nu }. \end{aligned}$$
(3.25)

In this subsection, we propose a \((D-1,0)\) DFT-metric as the ultra-relativistic ‘completion’ of the above degenerate inverse (3.25),

$$\begin{aligned} {\mathcal {H}}_{AB}=\left( \begin{array}{c@{\quad }c}1&{}0\\ B&{}1\end{array}\right) \left( \begin{array}{c@{\quad }c}-NN^{T}~&{}~ \Upsilon \Phi \\ \Phi \Upsilon ~&{}~ -TT^{T} \end{array}\right) \left( \begin{array}{c@{\quad }c}1&{}-B\\ 0&{}1\end{array}\right) ,\nonumber \\ \end{aligned}$$
(3.26)

where all the variables are from (3.24). It is easy to check that this ansatz satisfies the defining properties of the DFT-metric (2.1) and \({\mathcal {H}}_{A}{}^{A}=2\Upsilon ^{\mu \nu }\Phi _{\mu \nu }=2(D-1)\). Note the identification

$$\begin{aligned}&H^{\mu \nu }\equiv -N^{\mu }N^{\nu },\quad K_{\mu \nu }\equiv -T_{\mu }T_{\nu },\nonumber \\&\quad {\sum _{i=1}^{D-1}}\,X_{\mu }^{i}Y^{\nu }_{i} \equiv \Phi _{\mu \rho }\Upsilon ^{\rho \nu }. \end{aligned}$$
(3.27)

From (2.35), particles freeze over almost all the directions except one,

$$\begin{aligned} \Phi _{\mu \nu }\dot{x}^{\nu }\equiv 0. \end{aligned}$$
(3.28)

This is in agreement with the ultra-relativistic limit of Riemannian geodesics à la Bergshoeff et al. [73]. Namely, particles cannot move faster than light, and thus must freeze in the ultra-relativistic limit, \(c\rightarrow 0\).

In fact, \((D-1,0)\) forms a Carroll structure [74, 75]: \(\Phi _{\mu \nu }\) is known as a Carrollian metric, i.e. a rank \((D-1)\) covariant metric whose kernel is spanned by the Carroll vector, \(N^{\nu }\), and \(T_{\mu }\) is a principal connection. The Carrollian boost symmetry [75] is given, with an arbitrary local parameter, \(V^{\mu }\), by

$$\begin{aligned} T_{\mu }\longmapsto & {} T_{\mu }+\Phi _{\mu \nu }V^{\nu },\nonumber \\ \Upsilon ^{\mu \nu }\longmapsto & {} \Upsilon ^{\mu \nu }-2N^{(\mu }\Upsilon ^{\nu ) \rho }\Phi _{\rho \sigma }V^{\sigma }+N^{\mu }N^{\nu } \Phi _{\rho \sigma }V^{\rho }V^{\sigma },\nonumber \\ B_{\mu \nu }\longmapsto & {} B_{\mu \nu }+2T_{[\mu }\Phi _{\nu ]\rho }V^{\rho }, \end{aligned}$$
(3.29)

which leaves our \((D-1,0)\) DFT-metric (3.26) invariant, and can be identified with the symmetry of the DFT-vielbein (2.51) for the case of \((D-1,0)\).

Least non-Riemannian (1, 0) or (0, 1): Non-relativistic or Newton–Cartan

The ordinary Kaluza–Klein ansatz (2.53) treats the two block-diagonal Riemannian metrics, g and \(g^{\prime }\), asymmetrically. Exchanging the two will lead to an alternative Kaluza–Klein ansatz. In this subsection, we consider such an alternative ansatz for the Riemannian metric (3.9), which reads

$$\begin{aligned} g_{\mu \nu }&=(\delta _{\mu }{}^{\rho }-c^{-1}\Phi _{\mu \kappa }U^{\kappa }N^{\rho })(\delta _{\nu }{}^{\sigma }-c^{-1}\Phi _{\nu \lambda }U^{\lambda }N^{\sigma }) \nonumber \\&\quad \times \;(-c^{2}T_{\rho }T_{\sigma }+\Phi _{\rho \sigma }) \nonumber \\&=-c^{2}T_{\mu }T_{\nu }+2cT_{(\mu }\Phi _{\nu )\rho }U^{\rho } +\Phi _{\mu \nu }-\Phi _{\mu \rho }U^{\rho }\Phi _{\nu \sigma }U^{\sigma }, \end{aligned}$$
(3.30)

with the inverse,

$$\begin{aligned} g^{\mu \nu }&=(\delta ^{\mu }{}_{\rho }+c^{-1}N^{\mu }U^{\kappa }\Phi _{\kappa \rho }) (\delta ^{\nu }{}_{\sigma }+c^{-1}N^{\nu }U^{\lambda }\Phi _{\lambda \sigma }) \nonumber \\&\quad \times \;(-c^{-2}N^{\rho }N^{\sigma }+\Upsilon ^{\rho \sigma }) \nonumber \\&=\Upsilon ^{\mu \nu }+2c^{-1}N^{(\mu }U^{\nu )}-c^{-2}N^{\mu }N^{\nu } \nonumber \\&\quad \times \;\left( 1-U^{\rho }\Phi _{\rho \sigma }U^{\sigma }+2cT_{\rho }U^{\rho }\right) . \end{aligned}$$
(3.31)

Clearly the inverse of the Riemannian metric allows a non-singular large c limit,

$$\begin{aligned} {\lim _{c\rightarrow \infty }}\,g^{\mu \nu }=\Upsilon ^{\mu \nu }, \end{aligned}$$
(3.32)

of which the rank is \(D-1\).

The DFT-metric which completes this degenerate inverse is then

$$\begin{aligned} {\mathcal {H}}_{AB}=\left( \begin{array}{c@{\quad }c}1&{}0 \\ B&{}1\end{array}\right) \left( \begin{array}{c@{\quad }c}\Upsilon ~&{}~\pm NT^{T} \\ \pm TN^{T}~&{}~\Phi \end{array}\right) \left( \begin{array}{c@{\quad }c}1&{}-B \\ 0&{}1\end{array}\right) ,\nonumber \\ \end{aligned}$$
(3.33)

with \({\mathcal {H}}_{A}{}^{A}=\pm 2\). Here the upper and lower signs correspond to (1, 0) and (0, 1), respectively.

Satisfying (3.13), which we recall,

$$\begin{aligned}&T_{\mu }N^{\mu }=1,\quad T_{\mu }\Upsilon ^{\mu \nu }=0,\quad N^{\mu }\Phi _{\mu \nu }=0,\nonumber \\&T_{\mu }N^{\nu }+\Phi _{\mu \rho }\Upsilon ^{\rho \nu }=\delta _{\mu }{}^{\nu }, \end{aligned}$$
(3.34)

\(\{T_{\lambda }, \Upsilon ^{\mu \nu }\}\) forms a Leibnizian structure (cf. e.g. [76, 77]): \(T_{\lambda }\) is the absolute clock and \(\Upsilon ^{\mu \nu }\) is a collection of absolute rulers with non-negative signature, i.e.  \(\eta _{ab}=\delta _{ab}\) from (2.44). Further, the vector \(N^{\mu }\) corresponds to a field of observers, and the covariant rank \({D-1}\) metric, \(\Phi _{\mu \nu }\), provides the associated transverse metric. The transformation (2.15) reduces to

$$\begin{aligned} N^{\mu }\longmapsto & {} N^{\mu }+U^{\mu },\nonumber \\ \Phi _{\mu \nu }\longmapsto & {} \Phi _{\mu \nu }-2T_{(\mu } \Phi _{\nu )\rho }U^{\rho } +U^{\rho }\Phi _{\rho \sigma }U^{\sigma }T_{\mu }T_{\nu },\nonumber \\ B_{\mu \nu }\longmapsto & {} B_{\mu \nu }\mp 2T_{[\mu } \Phi _{\nu ]\rho }U^{\rho }, \end{aligned}$$
(3.35)

with \(U^{\mu }=\Upsilon ^{\mu \nu }V_{\nu }\in \text{ Ker }(T)\); this is sometimes referred to as a Milne transformation or a Galilean boost in the literature [78].

From (2.35), particles freeze over the time direction only,

$$\begin{aligned} T_{\mu }\dot{x}^{\mu }=0. \end{aligned}$$
(3.36)

Thus, the observer \(\dot{x}^\mu \) is said to be space-like. This is naturally dual to the ultra-relativistic Carroll dynamics (3.28) where time flows but all spatial directions freeze.

In order to account for the dynamics of time-like observers (for which time flows), one needs to introduce external forces, as done in the following subsection within the ambient framework of a null Kaluza–Klein reduction.

Embedding (0, 1) into ambient (0, 0) Kaluza–Klein ansatz: Carroll or Newton–Cartan

We start by considering the \(\hat{D}={1+D}\) Kaluza–Klein ansatz (2.60) for a Riemannian ambient DFT-metric, i.e.\((\hat{n},\hat{{\bar{n}}})=(0,0)\). As for the ‘internal’ space, we assume \(D^{\prime }=1\), \((n^{\prime },{\bar{n}}^{\prime })=(1,0)\) with \({\mathcal {H}}^{\prime }_{A^{\prime }B^{\prime }}\equiv {\mathcal {J}}^{\prime }_{A^{\prime }B^{\prime }}\). Then the ‘external’ DFT-metric, \({\mathcal {H}}_{AB}\), must be of the \((n,{\bar{n}})=(0,1)\) typeFootnote 8, i.e. the lower sign in (3.33), which ensures \(\hat{{\mathcal {H}}}_{\hat{A}}{}^{\hat{A}}=2(\hat{n}-\hat{{\bar{n}}})=2(n+n^{\prime }-{\bar{n}}-{\bar{n}}^{\prime })=0\). We let \((\tilde{y},y)\) denote the primed coordinates, \((\tilde{x}_{1}^{\prime },x^{\prime 1})\), and write for the ambient doubled coordinates

$$\begin{aligned} \mathrm{D}_{\tau }x^{\hat{A}}= & {} (\mathrm{D}_{\tau }\tilde{y},\,\dot{y},\nonumber \\ \mathrm{D}_{\tau }x^{A})= & {} (\dot{\tilde{y}}-A_{\tau \tilde{y}},\,\dot{y},\, \dot{\tilde{x}}_{\mu }-A_{\tau \mu },\,\dot{x}^{\nu }). \end{aligned}$$
(3.37)

We solve the constraint on \(W_{M^{\prime }}{}^{N}\) (2.57) by putting \(W_{\mu ^{\prime }}{}^{N}\equiv 0\), such that, for the present case of \(D^{\prime }=1\), we simply have

$$\begin{aligned} W_{M^{\prime }}{}^{N}\equiv \left( \,W^{N},\,0\,\right) , \end{aligned}$$
(3.38)

where the \(\mathbf {O}(D,D)\) vector, \(W^{N}\), carries no hidden index. By choosing this—instead of letting e.g. \(W^{\mu ^{\prime }N}\) vanish—we ensure a null Killing vector, \({\xi }^{\hat{A}}=(\tilde{{\xi }}_{\hat{\mu }},\,{\xi }^{\hat{\nu }})\) (2.8), (A.4) with \(\xi ^{\hat{\mu }}\partial _{\hat{\mu }}=\partial _{y}\), satisfying from (2.23),Footnote 9

$$\begin{aligned} \ln \left[ \int {\mathcal {D}}{\mathcal {A}}\,\exp \left( -\sqrt{(\xi ^{\hat{A}}-{\mathcal {A}}^{\hat{A}}) (\xi ^{\hat{B}}-{\mathcal {A}}^{\hat{B}})\hat{{\mathcal {H}}}_{\hat{A}\hat{B}}}\right) \right] =0. \end{aligned}$$
(3.39)

The ambient DFT-metric (2.60) then takes the following form:

$$\begin{aligned} \hat{{\mathcal {H}}}_{\hat{A}\hat{B}}=\left( \begin{array}{c@{\quad }c@{\quad }c} -2W_{{\bar{p}}}W^{{\bar{p}}}\,~&{}~\,1\,~&{}~\,2{\bar{V}}_{B{\bar{p}}}W^{{\bar{p}}}\\ 1\,~&{}~\,0\,~&{}~\,0\\ 2{\bar{V}}_{A{\bar{p}}}W^{{\bar{p}}}\,~&{}~\,0\,~&{}~\,{\mathcal {H}}_{AB}\end{array}\right) , \end{aligned}$$
(3.40)

where, using the notations of Sect. 2.3, we set a \((D+1)\)-dimensional \(\mathbf {Spin}(s+1,t+1)\) vector,Footnote 10

$$\begin{aligned} W^{{\bar{p}}}&= W^{A}{\bar{V}}_{A}{}^{{\bar{p}}}\nonumber \\&\equiv \left( \begin{array}{c@{\quad }c@{\quad }c} W^{\bar{a}},&\textstyle {\frac{1}{\sqrt{2}}}(W_{+}+W_{-}),&\textstyle {\frac{1}{\sqrt{2}}}(W_{+}-W_{-})\end{array}\right) , \end{aligned}$$
(3.41)

such that, from (2.42),

$$\begin{aligned} {\bar{P}}^{A}{}_{B}W^{B}= & {} {\bar{V}}^{A}{}_{{\bar{p}}}W^{{\bar{p}}}=\left( \textstyle {\frac{1}{\sqrt{2}}}{\bar{k}}_{\mu \bar{a}}W^{\bar{a}} +T_{\mu }W_{-} \right. \nonumber \\&\left. +\;B_{\mu \rho }\left( \textstyle {\frac{1}{\sqrt{2}}}W^{\bar{b}}\bar{h}_{\bar{b}}{}^{\rho } +W_{+}N^{\rho }\right) ,\right. \nonumber \\&\left. \textstyle {\frac{1}{\sqrt{2}}} W^{\bar{b}}\bar{h}_{\bar{b}}{}^{\nu } +W_{+}N^{\nu }\right) ,\nonumber \\ W_{{\bar{p}}}W^{{\bar{p}}}= & {} W_{A}W_{B}{\bar{P}}^{AB} =W_{\bar{a}}W^{\bar{a}}+2W_{+}W_{-}. \end{aligned}$$
(3.42)

It is also convenient to define based on (2.43) and (2.45)

$$\begin{aligned} W_{\mu }:=\sqrt{2}{\bar{{\mathcal {X}}}}_{\mu }{}^{{\bar{p}}}W_{{\bar{p}}}= \sqrt{2}{\bar{k}}_{\mu \bar{a}}W^{\bar{a}}+2W_{-}T_{\mu }. \end{aligned}$$
(3.43)

Note the identification of the conventions

$$\begin{aligned} \Phi _{\mu \nu }\equiv & {} K_{\mu \nu }=-{\bar{k}}_{\mu }{}^{\bar{a}} {\bar{k}}_{\nu }{}^{\bar{b}}\bar{\eta }_{\bar{a}\bar{b}},\nonumber \\ \Upsilon ^{\mu \nu }\equiv & {} H^{\mu \nu }=-\bar{\eta }^{\bar{a}\bar{b}} \bar{h}_{\bar{a}}{}^{\mu }\bar{h}_{\bar{b}}{}^{\nu }. \end{aligned}$$
(3.44)

Now, with the lower sign choice of (3.33), plugging (3.40) into the master doubled-yet-gauged action for a point particle (2.26), we obtain in a similar fashion to (2.32),

$$\begin{aligned}&S={\int \mathrm{d}\tau ~e^{-1\,}\mathrm{D}_{\tau }x^{\hat{A}}\mathrm{D}_{\tau }x^{\hat{B}} \hat{{\mathcal {H}}}_{\hat{A}\hat{B}}-{{\textstyle \frac{1}{4}}}m^{2}e}\nonumber \\&\qquad =\int \mathrm{d}\tau ~e^{-1}\Big [2\mathrm{D}_{\tau }\tilde{y}\left( \dot{y} +2\mathrm{D}_{\tau }x^{A}{\bar{V}}_{A{\bar{p}}}W^{{\bar{p}}}-\mathrm{D}_{\tau }\tilde{y}W_{{\bar{p}}}W^{{\bar{p}}}\right) +\mathrm{D}_{\tau }x^{A}\mathrm{D}_{\tau }x^{B}{\mathcal {H}}_{AB}\Big ]-{{\textstyle \frac{1}{4}}}m^{2}e\nonumber \\&\qquad ={\int \mathrm{d}\tau } \left[ \begin{array}{l} e^{-1}\Big [\dot{x}^{\mu }\dot{x}^{\nu } \Phi _{\mu \nu }+2\mathrm{D}_{\tau }\tilde{y}W_{\mu } \dot{x}^{\mu }-4(\mathrm{D}_{\tau }\tilde{y})^{2}W_{+}W_{-} +2\dot{y}\mathrm{D}_{\tau }\tilde{y}\Big ]-{{\textstyle \frac{1}{4}}}m^{2}e\\ -2e^{-1}\left( T_{\mu }\dot{x}^{\mu }-2\mathrm{D}_{\tau }\tilde{y}W_{+}\right) \Lambda -e^{-1}\bar{h}_{\bar{a}}{}^{\mu }\Lambda _{\mu }\bar{h}^{\bar{a}\nu }\Lambda _{\nu } \end{array}\right] , \end{aligned}$$
(3.45)

where we set for short notation as well as for a convenient field redefinition to replace \(A_{\tau \mu }\),

$$\begin{aligned} \Lambda _{\mu }&:=\dot{\tilde{x}}_{\mu }-A_{\tau \mu }-B_{\mu \kappa } \dot{x}^{\kappa }-\mathrm{D}_{\tau }\tilde{y}W_{\mu }, \nonumber \\ \Lambda&:=\Lambda _{\mu }N^{\mu }+2\mathrm{D}_{\tau }\tilde{y}W_{-}. \end{aligned}$$
(3.46)

Note that the very last term in (3.45) is a perfect square which vanishes after \(\bar{h}_{\bar{a}}{}^{\mu }\Lambda _{\mu }\) having been integrated out as

$$\begin{aligned} \bar{h}_{\bar{a}}{}^{\mu }\Lambda _{\mu }\equiv 0. \end{aligned}$$
(3.47)

Since y is the coordinate for the isometry direction, it serves as a Lagrange multiplier: it forces the conjugate momentum of y, or p, to be constant,

$$\begin{aligned} \frac{\mathrm{d}~}{\mathrm{d}\tau }\left( e^{-1}\mathrm{D}_{\tau }\tilde{y}\right) \equiv 0 \quad \Longrightarrow \quad 2\mathrm{D}_{\tau }\tilde{y}=ep \quad \text{ with } \text{ constant } \,p.\nonumber \\ \end{aligned}$$
(3.48)

Integrating out \(\Lambda \) gives a constraint,

$$\begin{aligned} {\mathcal {E}}_{\Lambda }:=T_{\mu }\dot{x}^{\mu }- ep W_{+}\equiv 0, \end{aligned}$$
(3.49)

such that the time is generically not frozen; cf. (3.36). Further, integrating out the auxiliary field, \(A_{\tau \tilde{y}}\), inside \(\mathrm{D}_{\tau }\tilde{y}\) determines the velocity, with (3.47), (3.48), and (3.49),

$$\begin{aligned} \dot{y}= & {} epW_{{\bar{p}}}W^{{\bar{p}}}-2\mathrm{D}_{\tau }x^{A}{\bar{V}}_{A{\bar{p}}}W^{{\bar{p}}}\nonumber \\= & {} -2 W_{+}\Lambda -W_{\mu }\dot{x}^{\mu }+2epW_{+}W_{-}. \end{aligned}$$
(3.50)

The einbein imposes the Hamiltonian constraint,

$$\begin{aligned} {\mathcal {E}}_{e}:=\Phi _{\mu \nu }\dot{x}^{\mu }\dot{x}^{\nu }+e^{2}p^{2}W_{+}W_{-}- 2epW_{+}\Lambda +{{\textstyle \frac{1}{4}}}e^{2}m^{2}\equiv 0. \end{aligned}$$
(3.51)

From (3.50) and (3.51), it follows that

$$\begin{aligned} -p\dot{y}= e^{-1}\Phi _{\mu \nu }\dot{x}^{\mu }\dot{x}^{\nu } +pW_{\mu }\dot{x}^{\mu }-ep^{2}W_{+}W_{-}+{{\textstyle \frac{1}{4}}}m^{2}e. \end{aligned}$$
(3.52)

That is to say, whenever \(p\ne 0\), \(\dot{y}\) is completely fixed by the dynamics of the \(x^{\mu }\) coordinates. The auxiliary variable, \(\Lambda \), is fixed in the same manner.

Making use of the world-line diffeomorphisms, we hereafter normalize the einbein:

$$\begin{aligned} e\equiv 1, \end{aligned}$$
(3.53)

such that \(\tau \) coincides with the proper length.

The equation of motion for \(x^{\mu }\) reads now

$$\begin{aligned} {\mathcal {E}}_{\mu }&:= \Phi _{\mu \nu }\ddot{x}^{\nu }+\left( \partial _{\rho }\Phi _{\sigma \mu }-{{\textstyle \frac{1}{2}}}\partial _{\mu }\Phi _{\rho \sigma }\right) \dot{x}^{\rho }\dot{x}^{\sigma }\nonumber \\&\qquad +\;\left( T_{\mu \nu }\Lambda -{{\textstyle \frac{1}{2}}}pW_{\mu \nu }\right) \dot{x}^{\nu }+{{\textstyle \frac{1}{2}}}p^{2}\partial _{\mu }(W_{+}W_{-})\nonumber \\&\qquad -\;p\Lambda \partial _{\mu }W_{+}-T_{\mu }\dot{\Lambda }, \end{aligned}$$
(3.54)

where we defined for simplicity the field strengths

$$\begin{aligned} T_{\mu \nu }:=\partial _{\mu }T_{\nu }-\partial _{\nu }T_{\mu },\quad W_{\mu \nu }:=\partial _{\mu }W_{\nu }-\partial _{\nu }W_{\mu }. \end{aligned}$$
(3.55)

Computing the contractions, \(N^{\mu }{\mathcal {E}}_{\mu }\), \(\dot{x}^{\mu }{\mathcal {E}}_{\mu }\), respectively, we obtain the time derivative of the auxiliary variable,

$$\begin{aligned} \dot{\Lambda }= & {} N^{\mu }\Big [\left( \partial _{\rho }\Phi _{\sigma \mu }-{{\textstyle \frac{1}{2}}}\partial _{\mu }\Phi _{\rho \sigma }\right) \dot{x}^{\rho }\dot{x}^{\sigma }+\left( T_{\mu \nu }\Lambda -{{\textstyle \frac{1}{2}}}pW_{\mu \nu }\right) \dot{x}^{\nu } \nonumber \\&\quad +\;{{\textstyle \frac{1}{2}}}p^{2}\partial _{\mu }(W_{+}W_{-})-p\Lambda \partial _{\mu }W_{+}\Big ], \end{aligned}$$
(3.56)

and a consistency relation among the constraints (3.49) and (3.51),

$$\begin{aligned} \dot{x}^{\mu }{\mathcal {E}}_{\mu }+\dot{\Lambda }{\mathcal {E}}_{\Lambda }- {{\textstyle \frac{1}{2}}}\dot{{\mathcal {E}}}_{e}=0. \end{aligned}$$
(3.57)

While (3.54) determines partially the acceleration, \(\ddot{x}^{\mu }\), the time derivative of the constraint (3.49) can provide the missing component,

$$\begin{aligned} \dot{{\mathcal {E}}}_{\Lambda }=T_{\mu }\ddot{x}^{\mu } +\partial _{(\mu }T_{\nu )}\dot{x}^{\mu }\dot{x}^{\nu } -p\dot{x}^{\mu }\partial _{\mu }W_{+}=0. \end{aligned}$$
(3.58)

All together, the combination \(\Upsilon ^{\lambda \mu }{\mathcal {E}}_{\mu }+N^{\lambda }\dot{{\mathcal {E}}}_{\Lambda }\) fully determines the acceleration,

$$\begin{aligned}&\ddot{x}^{\lambda }+\gamma ^{\lambda }_{\mu \nu } \dot{x}^{\mu }\dot{x}^{\nu }+\left[ \Upsilon ^{\lambda \mu } T_{\mu \nu }\Lambda -p\left( N^{\lambda }\partial _{\nu }W_{+}\right. \right. \nonumber \\&\quad \left. \left. +\;{{\textstyle \frac{1}{2}}}\Upsilon ^{\lambda \mu }W_{\mu \nu }\right) \right] \dot{x}^{\nu } +{{\textstyle \frac{1}{2}}}p^{2}\Upsilon ^{\lambda \mu }\partial _{\mu }(W_{+}W_{-})\nonumber \\&\quad -\;p\Lambda \Upsilon ^{\lambda \mu }\partial _{\mu }W_{+}=0, \end{aligned}$$
(3.59)

where \(\gamma ^{\lambda }_{\mu \nu }\) denotes the following coefficients:

$$\begin{aligned} \gamma ^{\lambda }_{\mu \nu }:=N^{\lambda }\partial _{(\mu }T_{\nu )}+ {{\textstyle \frac{1}{2}}}\Upsilon ^{\lambda \rho }\left( \partial _{\mu }\Phi _{\nu \rho }+\partial _{\nu }\Phi _{\rho \mu }- \partial _{\rho }\Phi _{\mu \nu }\right) . \end{aligned}$$
(3.60)

We emphasize that the dynamics of the D-dimensional coordinates \(x^\mu \) as prescribed by (3.59) is independent of the Kaluza–Klein direction, y. Geometrically, this means that one can interpret \(x^\mu \) as coordinates on the quotient manifold of the ambient spacetime by the light-like direction along the vector field, \(\xi ^{\hat{\mu }}\partial _{\hat{\mu }}=\partial _{y}\).

In the special case where \(T_{\mu \nu }\) vanishes (i.e.  the one-form, \(T_{\mu }\), is closed) and \(W_{+}\) is a (non-vanishing) constant, Eq. (3.59) simplifies to

$$\begin{aligned} \ddot{x}^{\lambda }+\gamma ^{\lambda }_{\mu \nu } \dot{x}^{\mu }\dot{x}^{\nu }= {{\textstyle \frac{1}{2}}}p \Upsilon ^{\lambda \mu }\left[ W_{\mu \nu }\dot{x}^{\nu } -p \partial _{\mu }(W_{+}W_{-})\right] ,\nonumber \\ \end{aligned}$$
(3.61)

of which the right-hand side can be interpreted as the Lorentz plus Coulomb forces. In this particular case, the coefficients (3.60) are the ones associated to the so-called ‘special Galilean connection’ for the field of observers, \(N^{\mu }\), (cf.  e.g.  [77]). In accordance with the usual Riemannian ambient approach of [80,81,82] (cf. also [75, 83, 85, 86]), the resulting dynamical trajectories (3.61) can be interpreted as Newton–Cartan geodesics. These are of two different types, depending on the value of p:

  • \(p=0\) (space-like observer).

    In this case, the constraint,Footnote 11 \(T_\mu \dot{x}^{\mu }= 0\), holds as a consequence of (3.49), so that we recover the case investigated in Sect. 3.5 for which time freezes. Geometrically, the observer trajectory is restricted to a \((D-1)\)-dimensional hypersurface (absolute space). The absolute spaces are Riemannian spaces (of Euclidean signature), since the degenerate metric \(\Phi _{\mu \nu }\) becomes invertible on \({\text {Ker }}T\) (cf. e.g. [77]). Equation (3.61) thus describes geodesics associated to the spatial Riemannian metric and the Hamiltonian constraint (3.51) can be solved as \(e=\frac{2}{|m|}\sqrt{\Phi _{\mu \nu }\dot{x}^{\mu }\dot{x}^{\nu }}\equiv 1\).

  • \(p\ne 0\) (time-like observer).

    In this case, \(\tau \) is parametrized to ensure \(e=\frac{1}{pW_+}T_\mu \dot{x}^\mu \equiv 1\) such that the observer \(\dot{x}^\mu \) is time-like. Equation (3.61) can thus be reformulated as

    $$\begin{aligned} \ddot{x}^{\lambda }+\hat{\gamma }^{\lambda }_{\mu \nu } \dot{x}^{\mu }\dot{x}^{\nu }=0, \end{aligned}$$
    (3.62)

    where the coefficients \(\hat{\gamma }^{\lambda }_{\mu \nu }\) are defined as

    $$\begin{aligned} \hat{\gamma }^{\lambda }_{\mu \nu }:=\gamma ^{\lambda }_{\mu \nu } +\Upsilon ^{\lambda \rho }\, T_{(\mu }F_{\nu )\rho }, \end{aligned}$$
    (3.63)

    with \(F_{\mu \nu }:=\partial _\mu A_\nu -\partial _\nu A_\mu \) and \(A_\mu :=\frac{1}{2\, W_+}\left( W_\mu -\right. \) \(\left. W_-\, T_\mu \right) \).

    The connection associated to the coefficients (3.63) is naturally interpreted as a Newtonian connection [79], i.e. a torsion-free connection compatible with the Leibnizian structure \((\Upsilon ^{\mu \nu },T_\mu )\) such that the associated field strength, \(F_{\mu \nu }\), is closed.

In summary, assuming the triviality of \(T_{\mu \nu }\) and \(W_{+}\), the doubled-yet-gauged particle action (2.26) with the ambient \((D+1)\)-dimensional Kaluza–Klein ansatz (2.60) reproduces the full content of Newtonian dynamics (unifying the space-like and time-like cases) on the D-dimensional manifold quotient along the light-like direction, y.

In principle, the assumption regarding the triviality of the variables, \(T_{\mu \nu }\) and \(W_{+}\), should be examined by considering the on-shell dynamics of the DFT-metric, i.e. the Euler–Lagrangian equations of DFT. In the present work, we have focused on the kinematical side of the DFT-metric and the subsequent particle and string dynamics on the background. We leave the investigation of the dynamical aspect of the \((n,{\bar{n}})\) DFT-metric for future work. From our perspective, the DFT action and its full equations of motion determine universally and unambiguously all the dynamics of the \((n,{\bar{n}})\) backgrounds, including (0, 0) Riemannian general relativity and (0, 1) Newton–Cartan gravity, in a unifying manner.

Change history

  • 08 November 2018

    Equation (2.51) in the original article as well as the arXiv versions [v1,v2,v3] contains sign errors.

Notes

  1. Strictly speaking, string theory does not predict general relativity but its own gravity, i.e. stringy gravity.

  2. However, a fully covariant four-indexed “Riemann-like” curvature has been argued not to exist [18, 19]. This absence is, in a way, consistent with the fact that there exists no locally inertial frame for an extended object, i.e. a string, where the stringy Christoffel connection (2.17) might vanish completely: the equivalence principle holds for particles, not strings.

  3. For U-duality analogs, cf. [24, 25].

  4. Yet, there are quite a few works in the literature which do not meet this criterion, relying explicitly on the Riemannian variables. Our results are thus not applicable therein.

  5. Ensuring the twofold spin groups in the maximally supersymmetric DFT [38] and the doubled-yet-gauged Green–Schwarz superstring action [22], the conventional IIA and IIB theories are unified into a single theory that is chiral with respect to both spin groups. The distinction of IIA and IIB then refers to two different types of (Riemannian) ‘solutions’ rather than ‘theories’.

  6. See also [71, 72].

  7. In Sects. 3.4 and 3.5, \(\{T_{\mu }, N^{\nu }, \Upsilon ^{\mu \nu }, \Phi _{\mu \nu }\}\) will be identified as either Carroll or Newton–Cartan variables.

  8. The alternative choice of \((n^{\prime },{\bar{n}}^{\prime })=(0,1)\) obtained by setting \({\mathcal {H}}^{\prime }_{A^{\prime }B^{\prime }}\equiv -{\mathcal {J}}^{\prime }_{A^{\prime }B^{\prime }}\) will involve replacing \({\bar{P}}\) by \(-P\) in (2.60), and accordingly the external DFT-metric, \({\mathcal {H}}\), will need to be of (1, 0) type.

  9. In terms of the ordinary Lie derivative, \({\mathcal {L}}_{\xi }\hat{g}_{\hat{\mu }\hat{\nu }}=0\), \({\mathcal {L}}_{\xi }\hat{B}_{\hat{\mu }\hat{\nu }}=-2\partial _{[\hat{\mu }}\tilde{\xi }_{\hat{\nu }]}\),  and (3.39) means \(\xi ^{\hat{\mu }}\xi ^{\hat{\nu }}\hat{g}_{\hat{\mu }\hat{\nu }}=0\).

  10. If we had chosen \((n,{\bar{n}})=(1,0)\), from (2.42), the expression (3.41) would have reduced to ‘\(W^{{\bar{p}}}=W^{\bar{a}}\)’ without \(W_{\pm }\).

  11. From the ambient perspective, the constraint, \(T_\mu \dot{x}^{\mu }= 0\), implies that the dynamics becomes restricted to a D-dimensional hypersurface of the ambient manifold, transverse to the null isometry vector field, \(\xi ^{\hat{\mu }}\partial _{\hat{\mu }}=\partial _{y}\). Such a light-like hypersurface is naturally endowed with a Carrollian metric structure [74], and the equations of motion (3.61) together with (3.50) and (3.56) can be naturally interpreted as geodesics associated to a suitable Carrollian connection induced by the ambient metric structure (cf. [74, 84] for details). The role of Carrollian time is then played by y and the ‘space-like’ directions are generically unfrozen, thus generalizing the Carrollian dynamics discussed in Sect. 3.4.

  12. The ambiguity in introducing the B-field through (A.8) amounts to the symmetry of the final result (2.16).

References

  1. T.H. Buscher, A symmetry of the string background field equations. Phys. Lett. B 194, 59 (1987). doi:10.1016/0370-2693(87)90769-6

    ADS  MathSciNet  Article  Google Scholar 

  2. T.H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models. Phys. Lett. B 201, 466 (1988). doi:10.1016/0370-2693(88)90602-8

    ADS  MathSciNet  Article  Google Scholar 

  3. M.J. Duff, Duality rotations in string theory. Nucl. Phys. B 335, 610 (1990). doi:10.1016/0550-3213(90)90520-N

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics. Phys. Lett. B 242, 163 (1990). doi:10.1016/0370-2693(90)91454-J

    ADS  MathSciNet  Article  Google Scholar 

  5. A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395 (1991). doi:10.1016/0550-3213(91)90266-Z

    ADS  MathSciNet  Article  Google Scholar 

  6. C.M. Hull, A geometry for non-geometric string backgrounds. JHEP 0510, 065 (2005). doi:10.1088/1126-6708/2005/10/065. arXiv:hep-th/0406102

    ADS  MathSciNet  Article  Google Scholar 

  7. C.M. Hull, Global aspects of T-duality, gauged sigma models and T-folds. JHEP 0710, 057 (2007). doi:10.1088/1126-6708/2007/10/057. arXiv:hep-th/0604178

    ADS  MathSciNet  Article  Google Scholar 

  8. C.M. Hull, Doubled geometry and T-folds. JHEP 0707, 080 (2007). doi:10.1088/1126-6708/2007/07/080. arXiv:hep-th/0605149

    ADS  MathSciNet  Article  Google Scholar 

  9. W. Siegel, Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 47, 5453 (1993). doi:10.1103/PhysRevD.47.5453. arXiv:hep-th/9302036

    ADS  MathSciNet  Article  Google Scholar 

  10. W. Siegel, Superspace duality in low-energy superstrings. Phys. Rev. D 48, 2826 (1993). doi:10.1103/PhysRevD.48.2826. arXiv:hep-th/9305073

    ADS  MathSciNet  Article  Google Scholar 

  11. C. Hull, B. Zwiebach, Double field theory. JHEP 0909, 099 (2009). doi:10.1088/1126-6708/2009/09/099. arXiv:0904.4664 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  12. C. Hull, B. Zwiebach, The Gauge algebra of double field theory and Courant brackets. JHEP 0909, 090 (2009). doi:10.1088/1126-6708/2009/09/090. arXiv:0908.1792 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  13. O. Hohm, C. Hull, B. Zwiebach, Generalized metric formulation of double field theory. JHEP 1008, 008 (2010). doi:10.1007/JHEP08(2010)008. arXiv:1006.4823 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. G. Aldazabal, D. Marques, C. Nunez, Double field theory: a pedagogical review. Class. Quantum Gravity 30, 163001 (2013). doi:10.1088/0264-9381/30/16/163001. arXiv:1305.1907 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. D.S. Berman, D.C. Thompson, Duality symmetric string and M-theory. Phys. Rep. 566, 1 (2014). doi:10.1016/j.physrep.2014.11.007. arXiv:1306.2643 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  16. O. Hohm, D. Lüst, B. Zwiebach, The spacetime of double field theory: review, remarks, and outlook. Fortsch. Phys. 61, 926 (2013). doi:10.1002/prop.201300024. arXiv:1309.2977 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. J.H. Park, Comments on double field theory and diffeomorphisms. JHEP 1306, 098 (2013). doi:10.1007/JHEP06(2013)098. arXiv:1304.5946 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. I. Jeon, K. Lee, J.H. Park, Stringy differential geometry, beyond Riemann. Phys. Rev. D 84, 044022 (2011). doi:10.1103/PhysRevD.84.044022. arXiv:1105.6294 [hep-th]

    ADS  Article  Google Scholar 

  19. O. Hohm, B. Zwiebach, On the Riemann tensor in double field theory. JHEP 1205, 126 (2012). doi:10.1007/JHEP05(2012)126. arXiv:1112.5296 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. K. Lee, J.H. Park, Covariant action for a string in “doubled yet gauged” spacetime. Nucl. Phys. B 880, 134 (2014). doi:10.1016/j.nuclphysb.2014.01.003. arXiv:1307.8377 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. S.M. Ko, C. Melby-Thompson, R. Meyer, J.H. Park, Dynamics of perturbations in double field theory & non-relativistic string theory. JHEP 1512, 144 (2015). doi:10.1007/JHEP12(2015)144. arXiv:1508.01121 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. J.H. Park, Green-Schwarz superstring on doubled-yet-gauged spacetime. JHEP 1611, 005 (2016). doi:10.1007/JHEP11(2016)005. arXiv:1609.04265 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. J. Gomis, H. Ooguri, Nonrelativistic closed string theory. J. Math. Phys. 42, 3127 (2001). doi:10.1063/1.1372697. arXiv:hep-th/0009181

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. E. Malek, Timelike U-dualities in generalised geometry. JHEP 1311, 185 (2013). doi:10.1007/JHEP11(2013)185. arXiv:1301.0543 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. C.D.A. Blair, E. Malek, J.H. Park, M-theory and type IIB from a duality manifest action. JHEP 1401, 172 (2014). doi:10.1007/JHEP01(2014)172. arXiv:1311.5109 [hep-th]

    ADS  Article  Google Scholar 

  26. R. Blumenhagen, A. Deser, D. Lust, E. Plauschinn, F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry. J. Phys. A 44, 385401 (2011). doi:10.1088/1751-8113/44/38/385401. arXiv:1106.0316 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids. JHEP 1302, 122 (2013). doi:10.1007/JHEP02(2013)122. arXiv:1211.0030 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marques, D. Roest, Duality orbits of non-geometric fluxes. Fortsch. Phys. 60, 1123 (2012). doi:10.1002/prop.201200078. arXiv:1203.6562 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. M. Cederwall, T-duality and non-geometric solutions from double geometry. Fortsch. Phys. 62, 942 (2014). doi:10.1002/prop.201400069. arXiv:1409.4463 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. J. Berkeley, D.S. Berman, F.J. Rudolph, Strings and branes are waves. JHEP 1406, 006 (2014). doi:10.1007/JHEP06(2014)006. arXiv:1403.7198 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. D.S. Berman, F.J. Rudolph, Branes are waves and monopoles. JHEP 1505, 015 (2015). doi:10.1007/JHEP05(2015)015. arXiv:1409.6314 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. K. Lee, S.J. Rey, Y. Sakatani, Effective action for non-geometric fluxes from duality covariant actions. arXiv:1612.08738 [hep-th]

  33. K.S. Choi, J.H. Park, Standard model as a double field theory. Phys. Rev. Lett. 115(17), 171603 (2015). doi:10.1103/PhysRevLett.115.171603. arXiv:1506.05277 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  34. X. Bekaert, J.H. Park, Higher spin double field theory: a proposal. JHEP 1607, 062 (2016). doi:10.1007/JHEP07(2016)062. arXiv:1605.00403 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. O. Hohm, D. Marques, Perturbative double field theory on general backgrounds. Phys. Rev. D 93(2), 025032 (2016). doi:10.1103/PhysRevD.93.025032. arXiv:1512.02658 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  36. J.H. Park, S.J. Rey, W. Rim, Y. Sakatani, \(\mathbf{O}(D, D)\) covariant Noether currents and global charges in double field theory. JHEP 1511, 131 (2015). doi:10.1007/JHEP11(2015)131. arXiv:1507.07545 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. C.D.A. Blair, Conserved currents of double field theory. JHEP 1604, 180 (2016). doi:10.1007/JHEP04(2016)180. arXiv:1507.07541 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. I. Jeon, K. Lee, J.H. Park, Y. Suh, Stringy unification of type IIA and IIB supergravities under N\(=\)2 D\(=\)10 supersymmetric double field theory. Phys. Lett. B 723, 245 (2013). doi:10.1016/j.physletb.2013.05.016. arXiv:1210.5078 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. M. Grana, Flux compactifications in string theory: a Comprehensive review. Phys. Rep. 423, 91 (2006). doi:10.1016/j.physrep.2005.10.008. arXiv:hep-th/0509003

    ADS  MathSciNet  Article  Google Scholar 

  40. D.T. Son, Newton–Cartan geometry and the quantum hall effect. arXiv:1306.0638 [cond-mat.mes-hall]

  41. E. Bergshoeff, Applied Newton–Cartan geometry, review talk at Simons Center. http://scgp.stonybrook.edu/video_portal/video.php?id=3051

  42. S.M. Ko, J.H. Park, M. Suh, The rotation curve of a point particle in stringy gravity. JCAP 1706(06), 002 (2017). doi:10.1088/1475-7516/2017/06/002. arXiv:1606.09307 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  43. E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel, T. ter Veldhuis, Carroll versus Galilei gravity. JHEP 1703, 165 (2017). doi:10.1007/JHEP03(2017)165. arXiv:1701.06156 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. I. Jeon, K. Lee, J.H. Park, Differential geometry with a projection: application to double field theory. JHEP 1104, 014 (2011). doi:10.1007/JHEP04(2011)014. arXiv:1011.1324 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. I. Jeon, K. Lee, J.H. Park, Double field formulation of Yang–Mills theory. Phys. Lett. B 701, 260 (2011). doi:10.1016/j.physletb.2011.05.051. arXiv:1102.0419 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  46. D. Andriot, A. Betz, \(\beta \)-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework. JHEP 1312, 083 (2013). doi:10.1007/JHEP12(2013)083. arXiv:1306.4381 [hep-th]

    ADS  Article  Google Scholar 

  47. A. Dabholkar, G.W. Gibbons, J.A. Harvey, F. Ruiz Ruiz, Superstrings and solitons. Nucl. Phys. B 340, 33 (1990). doi:10.1016/0550-3213(90)90157-9

    ADS  MathSciNet  Article  Google Scholar 

  48. J.H. Park, Green–Schwarz superstring and Stringy Gravity in doubled-yet-gauged spacetime, talk at Banff International Research Station. http://www.birs.ca/events/2017/5-day-workshops/17w5018/videos/watch/201701231429-Park.html

  49. I. Jeon, K. Lee, J.H. Park, Incorporation of fermions into double field theory. JHEP 1111, 025 (2011). doi:10.1007/JHEP11(2011)025. arXiv:1109.2035 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. I. Jeon, K. Lee, J.H. Park, Ramond–Ramond cohomology and \(\mathbf{O}(D, D)\) T-duality. JHEP 1209, 079 (2012). doi:10.1007/JHEP09(2012)079. arXiv:1206.3478 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. I. Jeon, K. Lee, J. H. Park, Supersymmetric double field theory: stringy reformulation of supergravity. Phys. Rev. D 85, 081501 (2012) (Erratum: [Phys. Rev. D 86 (2012) 089903] doi:10.1103/PhysRevD.86.089903, 10.1103/PhysRevD.85.081501, 10.1103/PhysRevD.85.089908 arXiv:1112.0069 [hep-th])

  52. W. Cho, J.J. Fernndez-Melgarejo, I. Jeon, J.H. Park, Supersymmetric gauged double field theory: systematic derivation by virtue of twist. JHEP 1508, 084 (2015). doi:10.1007/JHEP08(2015)084. arXiv:1505.01301 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. M.J. Duff, Hidden string symmetries? Phys. Lett. B 173, 289 (1986). doi:10.1016/0370-2693(86)90519-8

    ADS  MathSciNet  Article  Google Scholar 

  54. O. Hohm, A. Sen, B. Zwiebach, Heterotic effective action and duality symmetries revisited. JHEP 1502, 079 (2015). doi:10.1007/JHEP02(2015)079. arXiv:1411.5696 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  55. D. Geissbuhler, Double field theory and N\(=\)4 gauged supergravity. JHEP 1111, 116 (2011). doi:10.1007/JHEP11(2011)116. arXiv:1109.4280 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. G. Aldazabal, W. Baron, D. Marques, C. Nunez, The effective action of double field theory. JHEP 1111, 052 (2011) (Erratum: [JHEP 1111 (2011) 109] doi:10.1007/JHEP11(2011)052, 10.1007/JHEP11(2011)109. arXiv:1109.0290 [hep-th])

  57. M. Grana, D. Marques, Gauged double field theory. JHEP 1204, 020 (2012). doi:10.1007/JHEP04(2012)020. arXiv:1201.2924 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. D. Geissbuhler, D. Marques, C. Nunez, V. Penas, Exploring double field theory. JHEP 1306, 101 (2013). doi:10.1007/JHEP06(2013)101. arXiv:1304.1472 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. D.S. Berman, K. Lee, Supersymmetry for gauged double field theory and generalised Scherk–Schwarz reductions. Nucl. Phys. B 881, 369 (2014). doi:10.1016/j.nuclphysb.2014.02.015. arXiv:1305.2747 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. E. Malek, From exceptional field theory to heterotic double field theory via K3. JHEP 1703, 057 (2017). doi:10.1007/JHEP03(2017)057. arXiv:1612.01990 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. E. Malek, 7-dimensional \({\cal{N}}=2\) consistent truncations using \(\text{ SL }(5)\) exceptional field theory. JHEP 1706, 026 (2017). doi:10.1007/JHEP06(2017)026. arXiv:1612.01692 [hep-th]

    ADS  MathSciNet  Article  Google Scholar 

  62. E. Malek, Half-maximal supersymmetry from exceptional field theory, arXiv:1707.00714 [hep-th]

  63. J.H. Park, M. Yata (In preparation)

  64. N. Hitchin, Generalized Calabi–Yau manifolds. Q. J. Math. 54, 281 (2003). doi:10.1093/qjmath/54.3.281. arXiv:math/0209099 [math-dg]

    MathSciNet  Article  MATH  Google Scholar 

  65. M. Gualtieri, Generalized complex geometry. arXiv:math/0401221 [math-dg]

  66. N. Hitchin, Lectures on generalized geometry. arXiv:1008.0973 [math.DG]

  67. A. Coimbra, C. Strickland-Constable, D. Waldram, Supergravity as generalised geometry I: type II theories. JHEP 1111, 091 (2011). doi:10.1007/JHEP11(2011)091. arXiv:1107.1733 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. A. Coimbra, C. Strickland-Constable, D. Waldram, Generalised geometry and type II supergravity. Fortsch. Phys. 60, 982 (2012). doi:10.1002/prop.201100096. arXiv:1202.3170 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. M. Garcia-Fernandez, Torsion-free generalized connections and heterotic supergravity. Commun. Math. Phys. 332(1), 89 (2014). doi:10.1007/s00220-014-2143-5. arXiv:1304.4294 [math.DG]

    ADS  MathSciNet  Article  Google Scholar 

  70. W. Siegel, Amplitudes for left-handed strings. arXiv:1512.02569 [hep-th]

  71. O. Hohm, W. Siegel, B. Zwiebach, Doubled \(\alpha ^{\prime }\)-geometry. JHEP 1402, 065 (2014). doi:10.1007/JHEP02(2014)065. arXiv:1306.2970 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  72. Y.T. Huang, W. Siegel, E.Y. Yuan, Factorization of chiral string amplitudes. JHEP 1609, 101 (2016). doi:10.1007/JHEP09(2016)101. arXiv:1603.02588 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  73. E. Bergshoeff, J. Gomis, G. Longhi, Dynamics of carroll particles. Class. Quantum Gravity 31(20), 205009 (2014). doi:10.1088/0264-9381/31/20/205009. arXiv:1405.2264 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. C. Duval, G.W. Gibbons, P.A. Horvathy, P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time. Class. Quantum Gravity 31, 085016 (2014). doi:10.1088/0264-9381/31/8/085016. arXiv:1402.0657 [gr-qc]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. X. Bekaert, K. Morand, Connections and dynamical trajectories in generalised Newton–Cartan gravity II. An ambient perspective. arXiv:1505.03739 [hep-th]

  76. A.N. Bernal, M. Sanchez, Leibnizian, Galilean and Newtonian structures of space-time. J. Math. Phys. 44, 1129 (2003). doi:10.1063/1.1541120. arXiv:gr-qc/0211030

    ADS  MathSciNet  Article  MATH  Google Scholar 

  77. X. Bekaert, K. Morand, Connections and dynamical trajectories in generalised Newton–Cartan gravity I. An intrinsic view. J. Math. Phys. 57(2), 022507 (2016). doi:10.1063/1.4937445. arXiv:1412.8212 [hep-th]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. C. Duval, On Galilean isometries. Class. Quantum Gravity 10, 2217 (1993). doi:10.1088/0264-9381/10/11/006. arXiv:0903.1641 [math-ph]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  79. H.P. Künzle, Galilei and Lorentz structures on space-time—comparison of the corresponding geometry and physics. Ann. Inst. H. Poincare Phys. Theor. 17, 337 (1972)

    MathSciNet  Google Scholar 

  80. C. Duval, G. Burdet, H.P. Kunzle, M. Perrin, Bargmann structures and Newton–Cartan theory. Phys. Rev. D 31, 1841 (1985). doi:10.1103/PhysRevD.31.1841

    ADS  MathSciNet  Article  Google Scholar 

  81. C. Duval, G.W. Gibbons, P. Horvathy, Celestial mechanics, conformal structures and gravitational waves. Phys. Rev. D 43, 3907 (1991). doi:10.1103/PhysRevD.43.3907. arXiv:hep-th/0512188

    ADS  MathSciNet  Article  Google Scholar 

  82. B. Julia, H. Nicolai, Null Killing vector dimensional reduction and Galilean geometrodynamics. Nucl. Phys. B 439, 291 (1995). doi:10.1016/0550-3213(94)00584-2. arXiv:hep-th/9412002

    ADS  MathSciNet  Article  MATH  Google Scholar 

  83. X. Bekaert, K. Morand, Embedding nonrelativistic physics inside a gravitational wave. Phys. Rev. D 88(6), 063008 (2013). doi:10.1103/PhysRevD.88.063008. arXiv:1307.6263 [hep-th]

    ADS  Article  Google Scholar 

  84. K. Morand, Connections and dynamical trajectories in generalised Newton–Cartan gravity III. A Platonic allegory (In preparation)

  85. E. Minguzzi, Classical aspects of lightlike dimensional reduction. Class. Quantum Gravity 23, 7085 (2006). doi:10.1088/0264-9381/23/23/029. arXiv:gr-qc/0610011

    ADS  MathSciNet  Article  MATH  Google Scholar 

  86. X. Bekaert, Connections in Newton–Cartan geometry: intrinsic and ambient approaches, talk at Simons Center. http://scgp.stonybrook.edu/video_portal/video.php?id=3058

Download references

Acknowledgements

We would like to thank Xavier Bekaert and Daniel Waldram for helpful discussions as well as Soo-Jong Rey for supportive encouragement. K. M is grateful to Sogang University for hospitality while part of this work was completed. This work was supported by the National Research Foundation of Korea through the Grants 2015K1A3A1A21000302 and 2016R1D1A1B01015196, as well as by the Chilean Fondecyt Postdoc Project No. 3160325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hyuck Park.

Appendix: Derivation of the most general form of the DFT-metric, Eq. (2.2)

Appendix: Derivation of the most general form of the DFT-metric, Eq. (2.2)

By definition, see (2.1), the DFT-metric is a symmetric \(\mathbf {O}(D,D)\) element, such that it satisfies

$$\begin{aligned} {\mathcal {H}}_{MN}={\mathcal {H}}_{NM},\quad {\mathcal {H}}_{L}{}^{M}{\mathcal {H}}_{M}{}^{N}=\delta _{L}{}^{N}. \end{aligned}$$
(A.1)

With respect to the \(\mathbf {O}(D,D)\) metric (1.1) and the choice of the section, \(\tilde{\partial }^{\mu }\equiv 0\), we decompose the DFT-metric,

$$\begin{aligned} {\mathcal {H}}_{MN}=\left( \begin{array}{c@{\quad }c}{\mathcal {H}}^{\mu \nu }&{}{\mathcal {H}}^{\mu }{}_{\lambda }\\ {\mathcal {H}}_{\kappa }{}^{\nu }&{}{\mathcal {H}}_{\kappa \lambda }\end{array}\right) . \end{aligned}$$
(A.2)

The defining condition (A.1) reads explicitly

$$\begin{aligned}&{\mathcal {H}}^{\mu \nu }={\mathcal {H}}^{\nu \mu },\quad {\mathcal {H}}_{\mu \nu }={\mathcal {H}}_{\nu \mu },\quad {\mathcal {H}}_{\mu }{}^{\nu }={\mathcal {H}}^{\nu }{}_{\mu },\nonumber \\&{\mathcal {H}}^{(\mu }{}_{\rho }{\mathcal {H}}^{\nu )\rho }=0,\quad {\mathcal {H}}_{\rho (\mu }{\mathcal {H}}^{\rho }{}_{\nu )}=0,\nonumber \\&{\mathcal {H}}^{\mu }{}_{\rho }{\mathcal {H}}^{\rho }{}_{\nu }+{\mathcal {H}}^{\mu \rho }{\mathcal {H}}_{\rho \nu }=\delta ^{\mu }{}_{\nu }. \end{aligned}$$
(A.3)

The generalized Lie derivative of the DFT-metric, cf. (1.6),

$$\begin{aligned} {\hat{\mathcal {L}}}_{\xi }{\mathcal {H}}_{AB}= & {} \xi ^{C}\partial _{C}{\mathcal {H}}_{AB} +(\partial _{A}\xi _{C}-\partial _{C}\xi _{A}){\mathcal {H}}^{C}{}_{B}\nonumber \\&+\;(\partial _{B}\xi _{C}-\partial _{C}\xi _{B}){\mathcal {H}}_{A}{}^{C}, \end{aligned}$$
(A.4)

leads to

$$\begin{aligned} \delta {\mathcal {H}}^{\mu \nu }= & {} {\mathcal {L}}_{\xi }{\mathcal {H}}^{\mu \nu },\nonumber \\ \delta {\mathcal {H}}_{\kappa \lambda }= & {} {\mathcal {L}}_{\xi }{\mathcal {H}}_{\kappa \lambda } +(\partial _{\kappa }\tilde{\xi }_{\rho }-\partial _{\rho } \tilde{\xi }_{\kappa }){\mathcal {H}}^{\rho }{}_{\lambda }\nonumber \\&-\;{\mathcal {H}}_{\kappa }{}^{\rho } (\partial _{\rho }\tilde{\xi }_{\lambda }-\partial _{\lambda } \tilde{\xi }_{\rho }),\nonumber \\ \delta {\mathcal {H}}^{\mu }{}_{\lambda }= & {} {\mathcal {L}}_{\xi }{\mathcal {H}}^{\mu }{}_{\lambda } -{\mathcal {H}}^{\mu \rho }(\partial _{\rho }\tilde{\xi }_{\lambda }-\partial _{\lambda } \tilde{\xi }_{\rho }),\nonumber \\ \delta {\mathcal {H}}_{\kappa }{}^{\nu }= & {} {\mathcal {L}}_{\xi }{\mathcal {H}}_{\kappa }{}^{\nu } +(\partial _{\kappa }\tilde{\xi }_{\rho }-\partial _{\rho }\tilde{\xi }_{\kappa }) {\mathcal {H}}^{\rho \nu }. \end{aligned}$$
(A.5)

Viewed as a \(D\times D\) matrix, if \({\mathcal {H}}^{\mu \nu }\) is non-degenerate, we may identify it as the inverse of a Riemannian metric. It is easy to see then that the remaining constraints are all solved by a skew-symmetric B-field, such that the most general DFT-metric in this case takes the well-known form (1.9). Henceforth, we look for the most general form of the DFT-metric, where \({\mathcal {H}}^{\mu \nu }\) is degenerate. Firstly, we focus on the case where the rank of \({\mathcal {H}}^{\mu \nu }\) is \(D{-1}\), admitting only one zero-eigenvector, \(X_{\mu }\),

$$\begin{aligned} {\mathcal {H}}^{\mu \nu }\equiv H^{\mu \nu }, \quad H^{\mu \nu }X_{\nu }=0. \end{aligned}$$
(A.6)

From (A.3), \({\mathcal {H}}^{\mu }{}_{\rho }H^{\rho \nu }\) is skew-symmetric, and hence

$$\begin{aligned} X_{\mu }{\mathcal {H}}^{\mu }{}_{\rho }H^{\rho \nu }=-{\mathcal {H}}^{\nu }{}_{\rho } H^{\rho \mu }X_{\mu }=0. \end{aligned}$$
(A.7)

Without loss of generality then, introducing a skew-symmetric B-field,Footnote 12 we may put

$$\begin{aligned} {\mathcal {H}}^{\mu }{}_{\rho }H^{\rho \nu }\equiv - H^{\mu \rho } B_{\rho \sigma }H^{\sigma \nu },\quad {B}_{\mu \nu }=-{B}_{\nu \mu }. \end{aligned}$$
(A.8)

It follows that, with some vector field, \(Y^{\mu }\), \({\mathcal {H}}^{\mu }{}_{\nu }\) takes the form

$$\begin{aligned} {\mathcal {H}}^{\mu }{}_{\nu }=-H^{\mu \rho }B_{\rho \nu } +Y^{\mu }X_{\nu }. \end{aligned}$$
(A.9)

We proceed with a new symmetric variable, \(K_{\mu \nu }=K_{\nu \mu }\),

$$\begin{aligned} {\mathcal {H}}_{\mu \nu }\equiv K_{\mu \nu } -B_{\mu \rho }H^{\rho \sigma }B_{\sigma \nu } +2X_{(\mu }B_{\nu )\rho }Y^{\rho }. \end{aligned}$$
(A.10)

The last relation in (A.3) gives

$$\begin{aligned} H^{\mu \rho }K_{\rho \nu } +(Y^{\rho }X_{\rho })Y^{\mu }X_{\nu }=\delta ^{\mu }{}_{\nu }. \end{aligned}$$
(A.11)

Contracting this with \(X_{\mu }\) shows

$$\begin{aligned} Y^{\mu }X_{\mu }=\pm 1. \end{aligned}$$
(A.12)

Lastly we impose the skew-symmetric condition of \({\mathcal {H}}_{\mu \rho }{\mathcal {H}}^{\rho }{}_{\nu }\), which gives with (A.11)

$$\begin{aligned} K_{\mu \rho }Y^{\rho }X_{\nu } +K_{\nu \rho }Y^{\rho }X_{\mu }=0, \end{aligned}$$
(A.13)

and hence in particular, contracting with \(Y^{\mu }\), we have

$$\begin{aligned} K_{\nu \rho }Y^{\rho }= \mp (Y^{\mu }K_{\mu \rho }Y^{\rho })X_{\nu }. \end{aligned}$$
(A.14)

Substituting this back into (A.13), we conclude that \(Y^{\mu }K_{\mu \rho }Y^{\rho }\) must be trivial, and hence in fact from (A.14),

$$\begin{aligned} K_{\nu \rho }Y^{\rho }=0. \end{aligned}$$
(A.15)

We may perform a field redefinition, \(Y^{\mu }\rightarrow \pm Y^{\mu }\), in order to remove the sign factor in the normalization of (A.12). After all, the most general form of the DFT-metric in the ‘least’ degenerate case takes the form

$$\begin{aligned}&{\mathcal {H}}_{MN}\nonumber \\&\quad =\left( \begin{array}{c@{\quad }c} H^{\mu \nu }&{} -H^{\mu \sigma }B_{\sigma \lambda }\pm Y^{\mu }X_{\lambda }\\ B_{\kappa \rho }H^{\rho \nu }\pm X_{\kappa }Y^{\nu }&{}~~ K_{\kappa \lambda }-B_{\kappa \rho }H^{\rho \sigma }B_{\sigma \lambda } \pm 2X_{(\kappa }B_{\lambda )\rho }Y^{\rho }\end{array}\right) ,\nonumber \\ \end{aligned}$$
(A.16)

of which the variables must meet

$$\begin{aligned}&H^{\mu \nu }X_{\nu }=0,\quad K_{\mu \nu }Y^{\nu }=0,\quad Y^{\mu }X_{\mu }= 1,\nonumber \\&H^{\lambda \mu }K_{\mu \nu }+ Y^{\lambda }X_{\nu }=\delta ^{\lambda }{}_{\nu }, \quad B_{\mu \nu }=-B_{\nu \mu }. \end{aligned}$$
(A.17)

The above analysis can be straightforwardly extended to the most general degenerate cases, where there are N linearly independent zero-eigenvectors, \(X^{i}_{\mu }\), \(i=1,2,\ldots , N\), such that the rank of \({\mathcal {H}}^{\mu \nu }\) is \(D-N\),

$$\begin{aligned} {\mathcal {H}}^{\mu \nu }\equiv H^{\mu \nu },\quad \quad H^{\mu \nu }X^{i}_{\nu }=0. \end{aligned}$$
(A.18)

From

$$\begin{aligned}&{\mathcal {H}}^{(\mu }{}_{\rho }H^{\nu )\rho }=0,\quad {\mathcal {H}}^{\mu }{}_{\rho }H^{\rho \nu }X^{i}_{\nu }=0,\nonumber \\&X^{i}_{\mu }{\mathcal {H}}^{\mu }{}_{\rho }H^{\rho \nu }=0, \end{aligned}$$
(A.19)

Eqs. (A.9) and (A.10) generalize, defining \(Y_{i}^{\mu }\) and \(M_{\mu \nu }\), to

$$\begin{aligned} {\mathcal {H}}^{\mu }{}_{\nu }\equiv & {} -H^{\mu \rho }B_{\rho \sigma } +Y_{i}^{\mu }X^{i}_{\nu },\nonumber \\ {\mathcal {H}}_{\mu \nu }\equiv & {} M_{\mu \nu }-B_{\mu \rho }H^{\rho \sigma }B_{\sigma \nu } +2X^{i}_{(\mu }B_{\nu )\rho }Y_{i}^{\rho }, \end{aligned}$$
(A.20)

such that the DFT-metric assumes the following intermediate form:

$$\begin{aligned}&{\mathcal {H}}_{MN}\nonumber \\&\quad =\left( \begin{array}{c@{\quad }c} H^{\mu \nu }&{} -H^{\mu \sigma }B_{\sigma \lambda }+Y_{i}^{\mu }X^{i}_{\lambda }\\ B_{\kappa \rho }H^{\rho \nu }+X^{i}_{\kappa }Y_{i}^{\nu }&{}\quad ~~M_{\kappa \lambda }-B_{\kappa \rho }H^{\rho \sigma }B_{\sigma \lambda } +2X^{i}_{(\kappa }B_{\lambda )\rho }Y_{i}^{\rho } \end{array}\right) .\nonumber \\ \end{aligned}$$
(A.21)

In the above, the repeated index, i, is surely summed from 1 to N. The remaining constraints in (A.3) give

$$\begin{aligned} H^{\mu \rho }M_{\rho \nu }+(Y_{i}^{\rho }X^{j}_{\rho }) Y_{j}^{\mu }X^{i}_{\nu }= & {} \delta ^{\mu }{}_{\nu }, \end{aligned}$$
(A.22)
$$\begin{aligned} M_{\mu \rho }Y_{i}^{\rho }X^{i}_{\nu }+M_{\nu \rho } Y_{i}^{\rho }X^{i}_{\mu }= & {} 0. \end{aligned}$$
(A.23)

Contraction of (A.22) with \(X^{k}_{\mu }\) leads to

$$\begin{aligned} X^{i}_{\nu }( Y_{i}{\cdot X}^{j}\,Y_{j}{\cdot X}^{k})=X^{k}_{\nu }, \end{aligned}$$
(A.24)

where we set \(Y_{i}{\cdot X}^{j}\equiv Y_{i}^{\mu }X^{j}_{\mu }\). Since \(k=1,2,\ldots , N\) is arbitrary and the \(X^{k}_{\nu }\) are independent, the above result actually implies that \(Y_{i}{\cdot X}^{j}\) is an involutory \(N\times N\) matrix,

$$\begin{aligned} Y_{i}{\cdot X}^{j}\,Y_{j}{\cdot X}^{k}=\delta _{i}{}^{k}. \end{aligned}$$
(A.25)

On the other hand, contraction of (A.23) with \((Y_{j}{\cdot X}^{k})Y_{k}^{\mu }\) leads to

$$\begin{aligned} M_{\nu \rho }Y_{j}^{\rho }=-(Y_{j}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{i})X^{i}_{\nu }, \end{aligned}$$
(A.26)

where we set \(Y_{k}{\cdot M}{\cdot Y}_{i}\equiv Y_{k}^{\rho }M_{\rho \sigma }Y_{i}^{\sigma }\) for short notation. Substituting into (A.23), we get

$$\begin{aligned} (Y_{j}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{i}) X^{i}_{\mu }X^{j}_{\nu }+(Y_{j}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{i}) X^{i}_{\nu }X^{j}_{\mu }=0, \end{aligned}$$
(A.27)

which, after contraction with \(Y^{\mu }_{l}Y^{\nu }_{m}\) and from (A.25), can be seen to be equivalent to

$$\begin{aligned} (Y_{l}{\cdot X}^{i})(Y_{i}{\cdot M}{\cdot Y}_{m}) =-(Y_{m}{\cdot X}^{i})(Y_{i}{\cdot M}{\cdot Y}_{l}). \end{aligned}$$
(A.28)

It follows from (A.22), (A.25), and (A.26) that \((Y_{i}{\cdot X}^{j})Y_{j}^{\mu }X^{i}_{\nu }\) and \(H^{\mu \rho }M_{\rho \nu }\) are mutually orthogonal and complementary (A.22) projection matrices,

$$\begin{aligned}&(Y_{i}{\cdot X}^{j})Y_{j}^{\lambda }X^{i}_{\mu } \,(Y_{k}{\cdot X}^{l})Y_{l}^{\mu }X^{k}_{\nu }=(Y_{i}{\cdot X}^{j})Y_{j}^{\lambda }X^{i}_{\nu },\nonumber \\&H^{\lambda \rho }M_{\rho \mu }\,H^{\mu \sigma }M_{\sigma \nu }= H^{\lambda \rho }M_{\rho \nu },\nonumber \\&(Y_{i}{\cdot X}^{j})Y_{j}^{\lambda }X^{i}_{\mu }\, H^{\mu \sigma }M_{\sigma \nu }=0,\nonumber \\&H^{\lambda \rho }M_{\rho \mu }\,(Y_{k}{\cdot X}^{l}) Y_{l}^{\mu }X^{k}_{\nu }=0. \end{aligned}$$
(A.29)

Now, we may recast (A.26) into

$$\begin{aligned} \left[ M_{\mu \nu }+X^{i}_{\mu }\left\{ X^{l}_{\nu }(Y_{l}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{j}) X^{j}_{\rho }\right\} Y^{\rho }_{i}\right] Y^{\nu }_{m}=0.\nonumber \\ \end{aligned}$$
(A.30)

It is crucial to note, from the symmetric property, \(Y_{k}{\cdot M}{\cdot Y}_{j}=Y_{j}{\cdot M}{\cdot Y}_{k}\), that the free indices, \(\mu \) and \(\nu \), are symmetric in

$$\begin{aligned}&X^{i}_{\mu }\left\{ X^{l}_{\nu }(Y_{l}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{j}) X^{j}_{\rho }\right\} Y^{\rho }_{i}\nonumber \\&\quad = X^{i}_{\nu }\left\{ X^{l}_{\mu }(Y_{l}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{j}) X^{j}_{\rho }\right\} Y^{\rho }_{i}, \end{aligned}$$
(A.31)

and furthermore, from the skew-symmetric property (A.28), that the free indices, \(\nu \) and \(\rho \), are skew-symmetric in

$$\begin{aligned} X^{l}_{\nu }(Y_{l}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{j}) X^{j}_{\rho }=-X^{l}_{\rho }(Y_{l}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{j}) X^{j}_{\nu }. \end{aligned}$$
(A.32)

Therefore, if we perform a field redefinition,

$$\begin{aligned} B_{\mu \nu } \quad \longrightarrow \quad B_{\mu \nu }+{{\textstyle \frac{1}{2}}}X^{i}_{\mu }(Y_{i}{\cdot X}^{k}) (Y_{k}{\cdot M}{\cdot Y}_{j})X^{j}_{\nu }, \end{aligned}$$
(A.33)

among the components of the DFT-metric spelled in (A.21), \(H^{\mu \sigma }B_{\sigma \lambda }\), \(B_{\kappa \rho }H^{\rho \sigma }\), and \(B_{\kappa \rho }H^{\rho \sigma }B_{\sigma \lambda }\) remain invariant, but \(M_{\kappa \lambda } +2X^{i}_{(\kappa }B_{\lambda )\rho }Y_{i}^{\rho }\) transforms as follows:

$$\begin{aligned}&M_{\kappa \lambda } +2X^{i}_{(\kappa }B_{\lambda )\rho }Y_{i}^{\rho } \longrightarrow M_{\kappa \lambda }\nonumber \\&\quad +\;X^{i}_{(\kappa }\left\{ X_{\lambda )}^{j}(Y_{j}{\cdot X}^{k})(Y_{k}{\cdot M}{\cdot Y}_{l})X^{l}_{\rho } \right\} Y_{i}^{\rho } +2X^{i}_{(\kappa }B_{\lambda )\rho }Y_{i}^{\rho }. \end{aligned}$$
(A.34)

We then let

$$\begin{aligned} K_{\kappa \lambda }:=M_{\kappa \lambda }+X^{i}_{(\kappa }\left\{ X_{\lambda )}^{j}(Y_{j}{\cdot X}^{k})(Y_{k}{\cdot M}{\cdot Y}_{l})X^{l}_{\rho } \right\} Y_{i}^{\rho },\nonumber \\ \end{aligned}$$
(A.35)

which nicely satisfies

$$\begin{aligned} K_{\kappa \lambda }Y^{\lambda }_{i}=0, \quad H^{\mu \rho }K_{\rho \nu } +(Y_{i}{\cdot X}^{j})Y_{j}^{\mu }X^{i}_{\nu }=\delta ^{\mu }{}_{\nu }. \end{aligned}$$
(A.36)

Finally, we perform a similarity transformation, \((X^{i}_{\mu },Y_{j}^{\nu })\rightarrow (S^{i}{}_{k}X^{k}_{\mu }, Y_{k}^{\nu }S^{-1k}{}_{j})\), which leaves \(Y^{\mu }_{i}X^{i}_{\nu }\) invariant but diagonalizes \(Y^{\rho }_{i}X^{j}_{\rho }\) with the eigenvalues of either \(+1\) or \(-1\). We then let \(N=n+{\bar{n}}\) in order to denote the numbers of the \(+1\) and \(-1\) eigenvalues of \(Y^{\rho }_{i}X^{j}_{\rho }\). If the corresponding eigenvalue is \(-1\), we furthermore perform a field redefinition, \(({\bar{X}}^{\bar{\imath }}_{\mu },{\bar{Y}}_{\bar{\imath }}^{\nu }):=(X^{i}_{\mu }, -Y_{i}^{\nu })\), which involves the change of the index from i to \(\bar{\imath }\). In this way, we arrive at the most general form of the DFT-metric, (2.2), classified by two non-negative integers, \(n,{\bar{n}}\).

It is also worthwhile to decompose the B-field utilizing the completeness relation (2.5),

$$\begin{aligned} B_{\mu \nu }= & {} \beta _{\mu \nu }+B_{\mu j}X^{j}_{\nu }-B_{\nu j}X^{j}_{\mu }+\bar{B}_{\mu \bar{\jmath }}{\bar{X}}^{\bar{\jmath }}_{\nu } \nonumber \\&-\;\bar{B}_{\nu \bar{\jmath }}{\bar{X}}^{\bar{\jmath }}_{\mu }+X^{i}_{\mu }X^{j}_{\nu }b_{ij} +{\bar{X}}^{\bar{\imath }}_{\mu }{\bar{X}}^{\bar{\jmath }}_{\nu }b_{\bar{\imath }\bar{\jmath }} \nonumber \\&+\;2X^{i}_{[\mu }{\bar{X}}^{\bar{\jmath }}_{\nu ]}b_{i\bar{\jmath }}, \end{aligned}$$
(A.37)

for which we set

$$\begin{aligned} \beta _{\mu \nu }&:=(KH)_{\mu }{}^{\rho }(KH)_{\nu }{}^{\sigma } B_{\rho \sigma },\quad b_{ij}:=Y_{i}^{\mu }Y_{j}^{\nu }B_{\mu \nu },\nonumber \\ B_{\mu i}&:=B_{\mu \nu }Y^{\nu }_{i}-X_{\mu }^{j}b_{ji} +{\bar{X}}_{\mu }^{\bar{\jmath }}b_{i\bar{\jmath }},\nonumber \\ b_{i\bar{\jmath }}&:=Y_{i}^{\mu }{\bar{Y}}_{\bar{\jmath }}^{\nu }B_{\mu \nu },\quad b_{\bar{\imath }\bar{\jmath }}:={\bar{Y}}_{\bar{\imath }}^{\mu }{\bar{Y}}_{\bar{\jmath }}^{\nu }B_{\mu \nu },\nonumber \\ \bar{B}_{\mu \bar{\imath }}&:=B_{\mu \nu }{\bar{Y}}^{\nu }_{\bar{\imath }}-{\bar{X}}_{\mu }^{\bar{\jmath }} b_{\bar{\jmath }\bar{\imath }}-X_{\mu }^{j}b_{j\bar{\imath }}. \end{aligned}$$
(A.38)

The variables, \(B_{\mu i}\), \(\bar{B}_{\mu \bar{\imath }}\) and \(\beta _{\mu \nu }\) are completely orthogonal to the vectors, \(Y^{\mu }_{j}\) and \({\bar{Y}}^{\mu }_{\bar{\jmath }}\),

$$\begin{aligned}&B_{\mu i}Y^{\mu }_{j}=0,\quad B_{\mu i}{\bar{Y}}^{\mu }_{\bar{\jmath }}=0,\quad \bar{B}_{\mu \hat{\imath }}Y^{\mu }_{j}=0, \nonumber \\&\bar{B}_{\mu \hat{\imath }}{\bar{Y}}^{\mu }_{\bar{\jmath }}=0,\quad \beta _{\mu \nu }Y^{\mu }_{j}=0,\quad \beta _{\mu \nu }{\bar{Y}}^{\mu }_{\bar{\jmath }}=0. \end{aligned}$$
(A.39)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morand, K., Park, JH. Classification of non-Riemannian doubled-yet-gauged spacetime. Eur. Phys. J. C 77, 685 (2017). https://doi.org/10.1140/epjc/s10052-017-5257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-017-5257-z