Skip to main content
Log in

Supergravity as generalised geometry I: type II theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We reformulate ten-dimensional type II supergravity as a generalised geometrical analogue of Einstein gravity, defined by an O(9, 1) × O(1, 9) ⊂ O(10, 10) × \( {\mathbb{R}^{+} } \) structure on the generalised tangent space. Using the notion of generalised connection and torsion, we introduce the analogue of the Levi-Civita connection, and derive the corresponding tensorial measures of generalised curvature. We show how, to leading order in the fermion fields, these structures allow one to rewrite the action, equations of motion and supersymmetry variations in a simple, manifestly Spin(9, 1) × Spin(1, 9)-covariant form. The same formalism also describes d-dimensional compactifications to flat space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math.DG/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Gualtieri, Generalized complex geometry, DPhil thesis, Oxford University, Oxford U.K. (2004) [math.DG/0401221] [INSPIRE].

  3. M. Gualtieri, Generalized complex geometry, math.DG/0703298 [INSPIRE].

  4. D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. thesis, U.C. Berkeley, Berkeley U.S.A. [math.DG/9910078].

  5. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Jeschek and F. Witt, Generalised G 2 -structures and type IIB superstrings, JHEP 03 (2005) 053 [hep-th/0412280] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Berglund and P. Mayr, Non-perturbative superpotentials in F-theory and string duality, hep-th/0504058 [INSPIRE].

  9. U. Lindström, Generalized N = (2, 2) supersymmetric nonlinear σ-models, Phys. Lett. B 587 (2004) 216 [hep-th/0401100] [INSPIRE].

    ADS  Google Scholar 

  10. U. Lindström, R. Minasian, A. Tomasiello and M. Zabzine, Generalized complex manifolds and supersymmetry, Commun. Math. Phys. 257 (2005) 235 [hep-th/0405085] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. A. Kapustin, Topological strings on noncommutative manifolds, Int. J. Geom. Meth. Mod. Phys. 1 (2004) 49 [hep-th/0310057] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Kapustin and Y. Li, Topological σ-models with H-flux and twisted generalized complex manifolds, hep-th/0407249 [INSPIRE].

  13. A. Coimbra, C. Strickland-Constable and D. Waldram, to appear.

  14. C. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. B. de Wit and H. Nicolai, D = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363 [INSPIRE].

    Article  ADS  Google Scholar 

  17. H. Nicolai, D = 11 supergravity with local SO(16) invariance, Phys. Lett. B 187 (1987) 316 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. K. Koepsell, H. Nicolai and H. Samtleben, An exceptional geometry for D = 11 supergravity?, Class. Quant. Grav. 17 (2000) 3689 [hep-th/0006034] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  Google Scholar 

  20. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  Google Scholar 

  21. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

    ADS  Google Scholar 

  30. D. Brace, B. Morariu and B. Zumino, T duality and Ramond-Ramond backgrounds in the matrix model, Nucl. Phys. B 549 (1999) 181 [hep-th/9811213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Fukuma, T. Oota and H. Tanaka, Comments on T dualities of Ramond-Ramond potentials on tori, Prog. Theor. Phys. 103 (2000) 425 [hep-th/9907132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Hull, private communication.

  33. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].

    ADS  Google Scholar 

  35. P.C. West, The IIA, IIB and eleven-dimensional theories and their common E 11 origin, Nucl. Phys. B 693 (2004) 76 [hep-th/0402140] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. P. West, E 11 , generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [INSPIRE].

    ADS  Google Scholar 

  37. A. Rocen and P. West, E 11 , generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [INSPIRE].

  38. D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D.C. Thompson, Duality invariance: from M-theory to double field theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].

    Article  ADS  Google Scholar 

  44. Z. Chen, M. Stienon and P. Xu, On regular Courant algebroids, arXiv:0909.0319.

  45. A. Alekseev and P. Xu, Derived brackets and Courant algebroids, unpublished manuscript, (2001).

  46. I.T. Ellwood, NS-NS fluxes in Hitchin’s generalized geometry, JHEP 12 (2007) 084 [hep-th/0612100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Gualtieri, Branes on Poisson varieties, in The many facets of geometry, a tribute to Nigel Hitchin, O. García-Prada, J.P. Bourguignon and S. Salamon eds., Oxford University Press, Oxford U.K. (2010) [arXiv:0710.2719] [INSPIRE].

    Google Scholar 

  48. E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. N.J. Hitchin, Lectures on special Lagrangian submanifolds, math.DG/9907034 [INSPIRE].

  50. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Jeschek and F. Witt, Generalised geometries, constrained critical points and Ramond-Ramond fields, math.DG/0510131 [INSPIRE].

  52. I.Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A 125 (1987) 240.

    MathSciNet  ADS  Google Scholar 

  53. T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004) 61 [math.DG/0312524] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. M. Gualtieri, Generalized geometry and the Hodge decomposition, lecture at the String theory and geometry workshop, Oberwolfach Germany August 2004 [math.DG/0409093].

  56. S. Hassan, SO(d, d) transformations of Ramond-Ramond fields and space-time spinors, Nucl. Phys. B 583 (2000) 431 [hep-th/9912236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Hull and P. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].

    Article  ADS  Google Scholar 

  60. O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Coimbra.

Additional information

ArXiv ePrint: 1107.1733

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coimbra, A., Strickland-Constable, C. & Waldram, D. Supergravity as generalised geometry I: type II theories. J. High Energ. Phys. 2011, 91 (2011). https://doi.org/10.1007/JHEP11(2011)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)091

Keywords

Navigation