Skip to main content
Log in

Ramond-Ramond cohomology and O(D, D) T-duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the name of supersymmetric double field theory, superstring effective actions can be reformulated into simple forms. They feature a pair of vielbeins corresponding to the same spacetime metric, and hence enjoy double local Lorentz symmetries. In a manifestly covariant manner — with regard to O(D, D) T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz symmetries — we incorporate R-R potentials into double field theory. We take them as a single object which is in a bi-fundamental spinorial representation of the double Lorentz groups. We identify cohomological structure relevant to the field strength. A priori, the R-R sector as well as all the fermions are O(D, D) singlet. Yet, gauge fixing the two vielbeins equal to each other modifies the O(D, D) transformation rule to call for a compensating local Lorentz rotation, such that the R-R potential may turn into an O(D, D) spinor and T-duality can flip the chirality exchanging type IIA and IIB supergravities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T. Buscher, Quantum corrections and extended supersymmetry in new σ-modelS, Phys. Lett. B 159 (1985) 127 [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Giveon, E. Rabinovici and G. Veneziano, Duality in String Background Space, Nucl. Phys. B 322 (1989) 167 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Meissner and G. Veneziano, Symmetries of cosmological superstring vacua, Phys. Lett. B 267 (1991) 33 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  Google Scholar 

  13. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  Google Scholar 

  14. T. Courant, Dirac Manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University (2003) [math/0401221] [INSPIRE].

  16. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Hitchin, Lectures on generalized geometry, arXiv:1008.0973 [INSPIRE].

  19. A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Coimbra, C. Strickland-Constable and D. Waldram, Generalised Geometry and type-II Supergravity, arXiv:1202.3170 [INSPIRE].

  21. O. Hohm and S.K. Kwak, Frame-like Geometry of Double Field Theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

    ADS  Google Scholar 

  24. I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. I. Jeon, K. Lee and J.-H. Park, Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity, Phys. Rev. D 85 (2012) 081501 [arXiv:1112.0069] [INSPIRE].

    ADS  Google Scholar 

  26. I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. O. Hohm and B. Zwiebach, On the Riemann Tensor in Double Field Theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The Local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × \( {{\mathbb{R}}^{ + }} \) Generalised Geometry, Connections and M-theory, arXiv:1112.3989 [INSPIRE].

  32. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. P. West, E 11 , generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Rocen and P. West, E11, generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [INSPIRE].

  35. P. West, Generalised geometry, eleven dimensions and E11, JHEP 02 (2012) 018 [arXiv:1111.1642] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.K. Kwak, Invariances and Equations of Motion in Double Field Theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. N.B. Copland, Connecting T-duality invariant theories, J. Phys. Conf. Ser. 343 (2012) 012025 [INSPIRE].

    Article  ADS  Google Scholar 

  38. N. Kan, K. Kobayashi and K. Shiraishi, Equations of motion in Double Field Theory: from classical particles to quantum cosmology, arXiv:1201.6023 [INSPIRE].

  39. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    Article  ADS  Google Scholar 

  41. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, arXiv:1204.1979 [INSPIRE].

  42. G. Dibitetto, J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, arXiv:1203.6562 [INSPIRE].

  43. O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. D.S. Berman, H. Godazgar and M.J. Perry, SO(5,5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D.C. Thompson, Duality Invariance: From M-theory to Double Field Theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. O. Hohm, S.K. Kwak and B. Zwiebach, Unification of Type II Strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].

    Article  ADS  Google Scholar 

  48. O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double Field Theory for Double D-branes, JHEP 09 (2011) 025 [arXiv:1107.0876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. O. Hohm and S.K. Kwak, Massive Type II in Double Field Theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. N. Kan, K. Kobayashi and K. Shiraishi, Equations of Motion in Double Field Theory: From particles to scale factors, Phys. Rev. D 84 (2011) 124049 [arXiv:1108.5795] [INSPIRE].

    ADS  Google Scholar 

  52. G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].

  53. D. Geissbuhler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. D. Geissbuhler, Non-geometric aspects of string flux-compactifications, Ph.D. Thesis, Universität Bern 2012.

  55. M. Graña and D. Marques, Gauged Double Field Theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D.S. Berman, E.T. Musaev and M.J. Perry, Boundary Terms in Generalized Geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. N.B. Copland, A Double σ-model for Double Field Theory, JHEP 04 (2012) 044 [arXiv:1111.1828] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. O. Hohm and S.K. Kwak, N = 1 Supersymmetric Double Field Theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Fukuma, T. Oota and H. Tanaka, Comments on T dualities of Ramond-Ramond potentials on tori, Prog. Theor. Phys. 103 (2000) 425 [hep-th/9907132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. S. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Hassan, SO(d,d) transformations of Ramond-Ramond fields and space-time spinors, Nucl. Phys. B 583 (2000) 431 [hep-th/9912236] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Hassan, Supersymmetry and the systematics of T duality rotations in type-II superstring theories, Nucl. Phys. Proc. Suppl. 102 (2001) 77 [hep-th/0103149] [INSPIRE].

    Article  ADS  Google Scholar 

  64. N. Berkovits and P.S. Howe, Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring, Nucl. Phys. B 635 (2002) 75 [hep-th/0112160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8 - O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. P. Townsend, P-brane democracy, in The world in eleven dimensions M.J. Duff ed., pg. 375 [hep-th/9507048] [INSPIRE].

  67. M.B. Green, C.M. Hull and P.K. Townsend, D-brane Wess-Zumino actions, t duality and the cosmological constant, Phys. Lett. B 382 (1996) 65 [hep-th/9604119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. R. Benichou, G. Policastro and J. Troost, T-duality in Ramond-Ramond backgrounds, Phys. Lett. B 661 (2008) 192 [arXiv:0801.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].

    Article  Google Scholar 

  70. C. Caviezel, T. Wrase and M. Zagermann, Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. J. Blaback et al., Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. Y. Lozano, E.O. Colgain, K. Sfetsos and D.C. Thompson, Non-abelian T-duality, Ramond Fields and Coset Geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].

    Article  ADS  Google Scholar 

  74. K. Sfetsos, Recent developments in non-Abelian T-duality in string theory, Fortsch. Phys. 59 (2011) 1149 [arXiv:1105.0537] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. D. Geissbuhler, private communication.

  76. I. Jeon, K. Lee, J.-H. Park and Y. Suh, Type II Supersymmetric Double Field Theory, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hyuck Park.

Additional information

ArXiv ePrint: 1206.3478

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, I., Lee, K. & Park, JH. Ramond-Ramond cohomology and O(D, D) T-duality. J. High Energ. Phys. 2012, 79 (2012). https://doi.org/10.1007/JHEP09(2012)079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)079

Keywords

Navigation