Skip to main content
Log in

Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

A Correction to this article was published on 09 May 2023

This article has been updated

Abstract

From a statistical mechanics perspective, to describe the dynamics of a tracer, a phenomenological model has been established by a generalized Langevin equation (GLE) which includes a Basset force, a periodic perturbation force, a Stokes force, an external force and a thermal noise. Using the generalized Shapiro-Loginov formula, the iterative expressions of the first moments of the system are obtained. The time series of the first moments have been extensively investigated. By analyzing the time series of the first moments of the system with different system parameters, the irregular responses of the curves are revealed and tend to be stable for a long time. Significantly, the dynamics of average amplitudes of the first moments, influenced by various system parameters, have also been addressed in detail. Especially, the monotonic and non-monotonic properties of the average amplitudes of the first moments versus the memory exponent \(\alpha \) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The article is a theoretical research without data processing. Simulations program of the article are also without data processing. However, if the reader needs the simulation program of the article, readers can request the program in the article from the author by email.]

Change history

References

  1. K. Wiesenfeld, F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509), 33–36 (1995)

    ADS  Google Scholar 

  2. J. Spiechowicz, P. Hänggi, J. Luczka, Brownian motors in the microscale domain: Enhancement of efficiency by noise. Phys. Rev. E 90(3), 032104 (2014)

    ADS  Google Scholar 

  3. P. Batra, R. Chopra, Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise. Phys. A 561, 125148 (2021)

    MathSciNet  MATH  Google Scholar 

  4. G. Zhang, H. Wang, T. Zhang, Stochastic resonance research on under-damped nonlinear frequency fluctuation for coupled fractional-order harmonic oscillators. Results in Phys. 17, 103158 (2020)

    Google Scholar 

  5. Y.C. Cheng, H. Qian, Stochastic limit-cycle oscillations of a nonlinear system under random perturbations. J. Stat. Phys. 182(3), 1–33 (2021)

    ADS  MathSciNet  Google Scholar 

  6. J.C. Mauro, M.M. Smedskjaer, Statistical mechanics of glass. J. Non-Cryst. Solids 396, 41–53 (2014)

    ADS  Google Scholar 

  7. E. Lerner, I. Procaccia, J. Zylberg, Statistical mechanics and dynamics of a three-dimensional glass-forming system. Phys. Rev. Lett. 102, 125701 (2009)

    ADS  Google Scholar 

  8. W.B. Russel, A.P. Gast, Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows. J. Chem. Phys. 84, 1815–1826 (1986)

    ADS  Google Scholar 

  9. Grmela, M., öttinger, H. C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620 (1997)

  10. J. Garcia-Ojalvo, A.M. Arias, Towards a statistical mechanics of cell fate decisions. Curr. Opin. Genet. Dev. 22, 619–626 (2012)

    Google Scholar 

  11. A. Malijevský, G. Jackson, A perspective on the interfacial properties of nanoscopic liquid drops. J. Phys-Condens. Mat. 24, 464121 (2012)

    ADS  Google Scholar 

  12. X. Fu, B. Chen, J. Tang, A.H. Zewail, Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Sci. Adv. 3, e1701160 (2017)

    ADS  Google Scholar 

  13. A.C. Galucio, J.F. Deü, R. Ohayon, Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33, 282–291 (2004)

    MATH  Google Scholar 

  14. F.C. Meral, T.J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. 15, 939–945 (2010)

    MathSciNet  MATH  Google Scholar 

  15. I.S. Jesus, J.A.T. Machado, Implementation of fractional-order electromagnetic potential through a genetic algorithm. Commun. Nonlin. Sci. Numer. Simul. 14, 1838–1843 (2009)

    Google Scholar 

  16. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals 7(9), 1461–1477 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  17. N.Y. Yao, R.J. Larsen, D.A. Weitz, Probing nonlinear rheology with inertio-elastic oscillations. J. Rheology 52(4), 1013–1025 (2008)

    ADS  Google Scholar 

  18. H.L. Ou, R. Ren, K. Deng, Stochastic Resonance in a Fractional Oscillator with Cross-Correlation Noise. J. Stat. Phys. 188(1), 1–21 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  19. X. Huang, L. Lin, H. Wang, Generalized stochastic resonance for a fractional noisy oscillator with random mass and random damping. J. Stat. Phys. 178(5), 1201–1216 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  20. C. Zerbe, P. Jung, P. Hänggi, Brownian parametric oscillators. Phys. Rev. E 49(5), 3626 (1994)

    ADS  Google Scholar 

  21. D. Cohen, Quantum dissipation versus classical dissipation for generalized Brownian motion. Phys. Rev. Lett. 78(15), 2878 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  22. P.N. Pusey, The dynamics of interacting Brownian particles. J. Phys. A: Math. Gen. 8(9), 1433 (1975)

    ADS  Google Scholar 

  23. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes (Elsevier, New York, 1981)

    MATH  Google Scholar 

  24. A. Pekalski, K. Sznajd-Weron, Anomalous Diffusion From Basics to Applications (Springer, Berlin, 1999)

    MATH  Google Scholar 

  25. S. Burov, E. Barkai, Fractional Langevin equation: Overdamped, underdamped, and critical behaviors. Phys. Rev. E 78(3), 031112 (2008)

    ADS  MathSciNet  Google Scholar 

  26. E. Soika, R. Mankin, A. Ainsaar, Resonant behavior of a fractional oscillator with fluctuating frequency. Phys. Rev. E 81(1), 011141 (2010)

    ADS  Google Scholar 

  27. G. He, Y. Tian, M. Luo, Mittag-Leffler noise induced resonance behavior in a fractional generalized Langevin equation with random trichotomous inherent frequency. J. Stat. Mech. 2018(3), 033201 (2018)

    MathSciNet  MATH  Google Scholar 

  28. G. He, D. Guo, Y. Tian, T. Li, M. Luo, Mittag-Leffler noise induced stochastic resonance in a generalized Langevin equation with random inherent frequency. Phys. A 484, 91–103 (2017)

    MathSciNet  MATH  Google Scholar 

  29. W. Coffey, Y.P. Kalmykov, The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering (World Scientific, Singapore, 2012)

    MATH  Google Scholar 

  30. I. Golding, E.C. Cox, Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96(9), 098102 (2006)

    ADS  Google Scholar 

  31. D. Wirtz, Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38(1), 301–326 (2009)

    Google Scholar 

  32. C. Bräuchle, D.C. Lamb, J. Michaelis, Single Particle Tracking and Single Molecule Energy Transfer (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  33. J.H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, R. Metzler, Phys. Rev. Lett. 106(4), 048103 (2011)

    ADS  Google Scholar 

  34. A. Rohrbach, C. Tischer, D. Neumayer, E.L. Florin, E.H.K. Stelzer, Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrum. 75(6), 2197–2210 (2004)

    ADS  Google Scholar 

  35. R.M.L. Evans, M. Tassieri, D. Auhl, T.A. Waigh, Direct conversion of rheological compliance measurements into storage and loss moduli. Phys. Rev. E 80(1), 012501 (2009)

    ADS  Google Scholar 

  36. H. Lee, J.M. Ferrer, F. Nakamura, M.J. Lang, R.D. Kamm, Passive and active microrheology for cross-linked F-actin networks in vitro. Acta Biomater. 6(4), 1207–1218 (2010)

    Google Scholar 

  37. H.J.H. Clercx, P. Schram, Brownian particles in shear flow and harmonic potentials: A study of long-time tails. Phys. Rev. A 46(4), 1942 (1992)

    ADS  MathSciNet  Google Scholar 

  38. D.S. Grebenkov, M. Vahabi, E. Bertseva, L. Forró, S. Jeney, Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium. Phys. Rev. E 88(4), 040701 (2013)

    ADS  Google Scholar 

  39. D.S. Grebenkov, M. Vahabi, Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers. Phys. Rev. E 89(1), 012130 (2014)

    ADS  Google Scholar 

  40. É. Fodor, D.S. Grebenkov, P. Visco, F. van Wijland, Generalized Langevin equation with hydrodynamic backflow: Equilibrium properties. Phys. A 422, 107–112 (2015)

    MathSciNet  MATH  Google Scholar 

  41. J. Tóthová, V. Lisý, A note on the fluctuation Cdissipation relation for the generalized Langevin equation with hydrodynamic backflow. Phys. Lett. A 380, 2561–2564 (2016)

    ADS  MathSciNet  Google Scholar 

  42. G.T. He, H. Liu, G.J. Tang, J. Cao, Resonance behavior for a generalized Mittag-Leffler fractional Langevin equation with hydrodynamic interactions. Int. J. Mod. Phys. B 34(32), 2050310 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  43. A.B. Basset, A treatise on hydrodynamics: with numerous examples (Bell and Company, Deighton, 1888)

    MATH  Google Scholar 

  44. T. Indei, J.D. Schieber, A. Córdoba, Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Phys. Rev. E 85(4), 041504 (2012)

    ADS  Google Scholar 

  45. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Resonances arising from hydrodynamic memory in Brownian motion. Nature 478(7367), 85–88 (2011)

    ADS  Google Scholar 

  46. M.H. Lee, Generalized Langevin equation and recurrence relations. Phys. Rev. E 62(2), 1769 (2000)

    ADS  Google Scholar 

  47. M.A. Desposito, Superdiffusion induced by a long-correlated external random force. Phys. Rev. E 84(6), 061114 (2011)

    ADS  Google Scholar 

  48. S. Burov, E. Barkai, Critical exponent of the fractional Langevin equation. Phys. Rev. Lett. 100(7), 070601 (2008)

  49. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255–284 (1966)

    ADS  MATH  Google Scholar 

  50. R. Mankin, K. Laas, T. Laas, Stochastic multiresonance and correlation-time-controlled stability for a harmonic oscillator with fluctuating frequency. Phys. Rev. E 78(3), 031120 (2008)

    ADS  Google Scholar 

  51. K. Laas, R. Mankin, A. Rekker, Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency. Phys. Rev. E 79(5), 051128 (2009)

    ADS  Google Scholar 

  52. M. Gitterman, Stochastic oscillator with random mass: new type of Brownian motion. Phys. A 395, 11–21 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  53. M. Gitterman, Oscillator with random trichotomous mass. Phys. A 391(22), 5343–5348 (2012)

    MathSciNet  Google Scholar 

  54. M. Gitterman, Oscillator with random mass. J. Modern Phys. 2(02), 1136–1140 (2011)

    ADS  Google Scholar 

  55. R. Mankin, A. Ainsaar, A. Haljas, E. Reiter, Trichotomous-noise-induced catastrophic shifts in symbiotic ecosystems. Phys. Rev. E 65(5), 051108 (2002)

  56. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  57. A.A. Kilbas, H.M. Sarivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, New York, 2006)

    Google Scholar 

  58. V.E. Shapiro, V.M. Loginov, ¡ÅFormulae of differentiation!‘Å and their use for solving stochastic equations. Phys. A 91(3–4), 563–574 (1978)

    MathSciNet  Google Scholar 

  59. T. Sandev, Ž Tomovski, J.L.A. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise. Phys. A 390(21–22), 3627 (2011)

    Google Scholar 

  60. R. Gorenflo, F. Mainardi, Simply and multiply scaled diffusion limits for continuous time random walks. J. Phys: Conf. Ser. 7(1), 1 (2005)

    ADS  Google Scholar 

  61. W. Feller, An Introduction to Probability Theory and its Applications, vol. II (Wiley, New York, 1968)

    MATH  Google Scholar 

  62. P. Dyke, An Introduction to Laplace Transforms and Fourier Series (Springer, New York, 2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11601450, 11961006, 11526172), Guangxi Natural Science Foundation (Nos. 2020GXNSFAA159100, AD21159013, 2021GXNSFAA220033), Natural Science Foundation of Guangxi Minzu University (No. 2019KJQD02), Sichuan Youth Science Project (No. 2022NSFSC1840), and Xiangsi Lake Young Scholars Innovation Team of Guangxi Minzu University (No. 2021RSCXSHQN05).

Author information

Authors and Affiliations

Authors

Contributions

LQ, GH: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper. YP, HL, YT: Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Corresponding author

Correspondence to Guitian He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original online version of this article was revised: Figures 10, 12 and 14 were replaced.

Appendices

Appendix A: Coefficients of Eqs. (29), (30), (31)

$$\begin{aligned} {H_1}\left( s \right)&= \frac{{\left[ {d_2^2\left( s \right) - {a^2}{k^2}} \right] {g_1}\left( s \right) + {k^2}{g_4}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.1)
$$\begin{aligned} {H_2}\left( s \right)&= \frac{{ - k{d_2}\left( s \right) {g_3}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.2)
$$\begin{aligned} {H_3}\left( s \right)&= \frac{{{k^2}{g_3}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.3)
$$\begin{aligned} {H_4}\left( s \right)&= \frac{{\left[ {d_2^2\left( s \right) - {a^2}{k^2}} \right] {g_2}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.4)
$$\begin{aligned} {H_5}\left( s \right)&= \frac{{ - Mk{d_2}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.5)
$$\begin{aligned} {H_6}\left( s \right)&= \frac{{M{k^2}}}{\sigma }, \end{aligned}$$
(A.6)
$$\begin{aligned} {I_1}\left( s \right)&= \frac{{2q{a^2}k{d_3}\left( s \right) {g_1}\left( s \right) - k{d_1}\left( s \right) {g_4}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.7)
$$\begin{aligned} {I_2}\left( s \right)&= \frac{{{d_1}\left( s \right) {d_2}\left( s \right) {g_3}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.8)
$$\begin{aligned} {I_3}\left( s \right)&= \frac{{ - k{d_1}\left( s \right) {g_3}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.9)
$$\begin{aligned} {I_4}\left( s \right)&= \frac{{2q{a^2}k{d_3}\left( s \right) {g_2}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.10)
$$\begin{aligned} {I_5}\left( s \right)&= \frac{{M{d_1}\left( s \right) {d_2}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.11)
$$\begin{aligned} {I_6}\left( s \right)&= \frac{{ - Mk{d_1}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.12)
$$\begin{aligned} {J_1}\left( s \right)&= \frac{{{d_2}\left( s \right) \left[ {{d_1}\left( s \right) {g_4}\left( s \right) - 2q{a^2}{d_3}\left( s \right) {g_1}\left( s \right) } \right] }}{\sigma }, \end{aligned}$$
(A.13)
$$\begin{aligned} {J_2}\left( s \right)&= \frac{{ - {a^2}k\left[ {{d_1}\left( s \right) - 2q{d_3}\left( s \right) } \right] {g_3}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.14)
$$\begin{aligned} {J_3}\left( s \right)&= \frac{{{d_1}\left( s \right) {d_2}\left( s \right) {g_3}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.15)
$$\begin{aligned} {J_4}\left( s \right)&= \frac{{ - 2q{a^2}{d_2}\left( s \right) {d_3}\left( s \right) {g_2}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.16)
$$\begin{aligned} {J_5}\left( s \right)&= \frac{{ - M{a^2}k\left[ {{d_1}\left( s \right) - 2q{d_3}\left( s \right) } \right] }}{\sigma }, \end{aligned}$$
(A.17)
$$\begin{aligned} {J_6}\left( s \right)&= \frac{{M{d_1}\left( s \right) {d_2}\left( s \right) }}{\sigma }, \end{aligned}$$
(A.18)

where \(d_1(s),d_1(s),d_3(s)\) and \(g_1(s),g_2(s),g_3(s),g_4(s)\) are given by Eqs. (27),(28), respectively.

Appendix B: The inverse Laplace transform of Eqs. (A.1)–(A.18)

From Eqs. (A.1)–(A.18), due to the following limit

$$\begin{aligned} \mathop {\lim }\limits _{s \rightarrow 0} \frac{{{H_n}\left( s \right) }}{{{Y_n}\left( s \right) }} = 1,\mathop {\lim }\limits _{s \rightarrow 0} \frac{{{I_n}\left( s \right) }}{{{U_n}\left( s \right) }} = 1,\mathop {\lim }\limits _{s \rightarrow 0} \frac{{{J_n}\left( s \right) }}{{{V_n}\left( s \right) }} = 1,n = 1,2, \ldots ,6, \end{aligned}$$
(B.1)

where

$$\begin{aligned} {Y_1}\left( s \right)&= \frac{{\mathrm{{P}}{r_h}{s^{\frac{1}{2}}} - 2q{a^2}{k^2}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.2)
$$\begin{aligned} {Y_2}\left( s \right)&= \frac{{ - k{\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.3)
$$\begin{aligned} {Y_3}\left( s \right)&= \frac{{{k^2}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.4)
$$\begin{aligned} {Y_4}\left( s \right)&= \frac{{M\mathrm{{P}}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.5)
$$\begin{aligned} {Y_5}\left( s \right)&= \frac{{ - Mk{\mathrm{{P}}_1}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.6)
$$\begin{aligned} {Y_6}\left( s \right)&= \frac{{M{k^2}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.7)
$$\begin{aligned} {U_1}\left( s \right)&= \frac{{ - 2q{a^2}k\left[ {{\mathrm{{P}}_2}{r_h}{s^{\frac{1}{2}}} - {\mathrm{{P}}_4}\left( {{r_\alpha }{s^\alpha } + 1} \right) } \right] }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.8)
$$\begin{aligned} {U_2}\left( s \right)&= \frac{{\left( {{r_\alpha }{s^\alpha } + 1} \right) {\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.9)
$$\begin{aligned} {U_3}\left( s \right)&= \frac{{ - k{\mathrm{{P}}_4}\left( {{r_\alpha }{s^\alpha } + 1} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.10)
$$\begin{aligned} {U_4}\left( s \right)&= \frac{{ - 2q{a^2}kM{\mathrm{{P}}_2}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.11)
$$\begin{aligned} {U_5}\left( s \right)&= \frac{{M{\mathrm{{P}}_1}\left( {{r_\alpha }{s^\alpha } + 1} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.12)
$$\begin{aligned} {U_6}\left( s \right)&= \frac{{ - Mk\left( {{r_\alpha }{s^\alpha } + 1} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.13)
$$\begin{aligned} {V_1}\left( s \right)&= \frac{{ - 2q{a^2}{\mathrm{{P}}_1}\left[ {{\mathrm{{P}}_4}\left( {{r_\alpha }{s^\alpha } + 1} \right) - {\mathrm{{P}}_2}{r_h}{s^{\frac{1}{2}}}} \right] }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.14)
$$\begin{aligned} {V_2}\left( s \right)&= \frac{{ - {a^2}k{\mathrm{{P}}_4}\left( {{r_\alpha }{s^\alpha } + {\mathrm{{P}}_3}} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.15)
$$\begin{aligned} {V_3}\left( s \right)&= \frac{{\left( {{r_\alpha }{s^\alpha } + 1} \right) {\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.16)
$$\begin{aligned} {V_4}\left( s \right)&= \frac{{2q{a^2}M{\mathrm{{P}}_1}{\mathrm{{P}}_2}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.17)
$$\begin{aligned} {V_5}\left( s \right)&= \frac{{ - M{a^2}k\left( {{r_\alpha }{s^\alpha } + {\mathrm{{P}}_3}} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.18)
$$\begin{aligned} {V_6}\left( s \right)&= \frac{{M{\mathrm{{P}}_1}\left( {{r_\alpha }{s^\alpha } + 1} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}, \end{aligned}$$
(B.19)

therefore, one has

$$\begin{aligned}&{H_n}\left( s \right) \simeq {Y_n}\left( s \right) ,{I_n}\left( s \right) \simeq {U_n}\left( s \right) ,\nonumber \\&{J_n}\left( s \right) \simeq {V_n}\left( s \right) ,n = 1,2, \ldots ,6. \end{aligned}$$
(B.20)

One assumes that \({h_n}\left( t \right) ,n = 1,2, \ldots ,6\), are the inverse Laplace transform of \({H_n}\left( s \right) ,n = 1,2, \ldots ,6\), respectively. Due to the fact that \({H_n}\left( s \right) ,n = 1,2, \ldots ,6\) are equivalent to \({Y_n}\left( s \right) ,n = 1,2, \ldots ,6\), taking the inverse Laplace transform of Eqs. (A.1)-(A.6), one can obtain

$$\begin{aligned} {h_1}\left( t \right)&= {L^{ - 1}}\left[ {{H_1}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{Y_1}\left( s \right) } \right] \nonumber \\&= \frac{{{r_h}}}{{{r_\alpha }}}{t^{\alpha - \frac{3}{2}}}{E_{\alpha ,\alpha - \frac{1}{2}}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) \nonumber \\&\quad + \frac{{2q{a^2}{k^2}{\mathrm{{P}}_4}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= \frac{{{r_h}}}{{{r_\alpha }}}{t^{\alpha - \frac{3}{2}}}{E_{\alpha ,\alpha - \frac{1}{2}}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) \nonumber \\&\quad + \frac{{2q{a^2}{k^2}{\mathrm{{P}}_4}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.21)
$$\begin{aligned} {h_2}\left( t \right)&= {L^{ - 1}}\left[ {{H_2}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{Y_2}\left( s \right) } \right] \nonumber \\&= \frac{{k{\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= \frac{{k{\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.22)
$$\begin{aligned} {h_3}\left( t \right)&= {L^{ - 1}}\left[ {{H_3}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{Y_3}\left( s \right) } \right] \nonumber \\&= - \frac{{{k^2}{\mathrm{{P}}_4}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - \frac{{{k^2}{\mathrm{{P}}_4}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.23)
$$\begin{aligned} {h_4}\left( t \right)&= {L^{ - 1}}\left[ {{H_4}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{Y_4}\left( s \right) } \right] \nonumber \\&= - \frac{{M\mathrm{{P}}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - \frac{{M\mathrm{{P}}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.24)
$$\begin{aligned} {h_5}\left( t \right)&= {L^{ - 1}}\left[ {{H_5}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{Y_5}\left( s \right) } \right] \nonumber \\&= \frac{{Mk{\mathrm{{P}}_1}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= \frac{{Mk{\mathrm{{P}}_1}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.25)
$$\begin{aligned} {h_6}\left( t \right)&= {L^{ - 1}}\left[ {{H_6}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{Y_6}\left( s \right) } \right] \nonumber \\&= - \frac{{M{k^2}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - \frac{{M{k^2}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.26)

where involving two-parameter Mittag-Leffler function [56, 57] is given by \( E_{\mu , v}(z)=\sum _{n=0}^{\infty } \frac{z^{n}}{\varGamma (\mu n+v)}, \mathcal {R} e(\mu )>0, v \in \mathbb {C}, z \in \mathbb {C} \), and \(E_{\mu , 1}(z)=E_{\mu }(z)\) turns to Mittag-Leffler function [56, 57], \(E_{\mu }(z)=\sum _{n=0}^{\infty } \frac{z^{n}}{\varGamma (\mu n+1)}\), \(\alpha >0, z \in \mathbb {C}\).

Letting \({i_n}\left( t \right) ={L^{ - 1}}\left[ {I_n}\left( s \right) \right] ,n = 1,2, \ldots ,6\), Since \({I_n}\left( s \right) ,n = 1,2, \ldots ,6\), are equivalent to \({U_n}\left( s \right) ,n = 1,2, \ldots ,6\), taking the inverse Laplace transform of Eqs (A.7)–(A.12), one can obtain

$$\begin{aligned} {i_1}\left( t \right)&= {L^{ - 1}}\left[ {{I_1}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{U_1}\left( s \right) } \right] \nonumber \\&= - \frac{{2q{a^2}k{\mathrm{{P}}_2}{r_h}}}{{\mathrm{{P}}{r_\alpha }}}{t^{\alpha - \frac{3}{2}}}{E_{\alpha ,\alpha - \frac{1}{2}}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) \nonumber \\&\quad + 2q{a^2}k{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - \frac{{2q{a^2}k{\mathrm{{P}}_2}{r_h}}}{{\mathrm{{P}}{r_\alpha }}}{t^{\alpha - \frac{3}{2}}}{E_{\alpha ,\alpha - \frac{1}{2}}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) \nonumber \\&\quad + 2q{a^2}k{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.27)
$$\begin{aligned} {i_2}\left( t \right)&= {L^{ - 1}}\left[ {{I_2}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{U_2}\left( s \right) } \right] \nonumber \\&= {\mathrm{{P}}_1}{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= {\mathrm{{P}}_1}{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.28)
$$\begin{aligned} {i_3}\left( t \right)&= {L^{ - 1}}\left[ {{I_3}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{U_3}\left( s \right) } \right] \nonumber \\&= - k{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - k{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.29)
$$\begin{aligned} {i_4}\left( t \right)&= {L^{ - 1}}\left[ {{I_4}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{U_4}\left( s \right) } \right] \nonumber \\&= \frac{{2q{a^2}kM{\mathrm{{P}}_4}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= \frac{{2q{a^2}kM{\mathrm{{P}}_4}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.30)
$$\begin{aligned} {i_5}\left( t \right)&= {L^{ - 1}}\left[ {{I_5}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{U_5}\left( s \right) } \right] \nonumber \\&= M{\mathrm{{P}}_1}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= M{\mathrm{{P}}_1}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.31)
$$\begin{aligned} {i_6}\left( t \right)&= {L^{ - 1}}\left[ {{I_6}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{U_6}\left( s \right) } \right] \nonumber \\&= - Mk\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - Mk\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) . \end{aligned}$$
(B.32)

Letting \({j_n}\left( t \right) ={L^{ - 1}}\left[ {J_n}\left( s \right) \right] ,n = 1,2, \ldots ,6\), using similar technique and taking the inverse Laplace transform of Eqs. (A.13)-(A.18), one can obtain

$$\begin{aligned} {j_1}\left( t \right)&= {L^{ - 1}}\left[ {{J_1}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{V_1}\left( s \right) } \right] \nonumber \\&= - \frac{{2q{a^2}{\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }}}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&+ 2q{a^2}{\mathrm{{P}}_1}{\mathrm{{P}}_2}{t^{\alpha - \frac{3}{2}}}{E_{\alpha ,\alpha - \frac{1}{2}}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) \nonumber \\&= - \frac{{2q{a^2}{\mathrm{{P}}_1}{\mathrm{{P}}_4}}}{{\mathrm{{P}}{r_\alpha }}}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) \nonumber \\&+ 2q{a^2}{\mathrm{{P}}_1}{\mathrm{{P}}_2}{t^{\alpha - \frac{3}{2}}}{E_{\alpha ,\alpha - \frac{1}{2}}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.33)
$$\begin{aligned} {j_2}\left( t \right)&= {L^{ - 1}}\left[ {{J_2}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{V_2}\left( s \right) } \right] \nonumber \\&= - {a^2}k{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{{{\mathrm{{P}}_3}}}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - {a^2}k{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{{{\mathrm{{P}}_3}}}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.34)
$$\begin{aligned} {j_3}\left( t \right)&= {L^{ - 1}}\left[ {{J_3}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{V_3}\left( s \right) } \right] \nonumber \\&= {\mathrm{{P}}_1}{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= {\mathrm{{P}}_1}{\mathrm{{P}}_4}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.35)
$$\begin{aligned} {j_4}\left( t \right)&= {L^{ - 1}}\left[ {{J_4}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{V_4}\left( s \right) } \right] \nonumber \\&= - \frac{{2q{a^2}M{\mathrm{{P}}_1}{\mathrm{{P}}_2}}}{Q}\frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - \frac{{2q{a^2}M{\mathrm{{P}}_1}{\mathrm{{P}}_2}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.36)
$$\begin{aligned} {j_5}\left( t \right)&= {L^{ - 1}}\left[ {{J_5}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{V_5}\left( s \right) } \right] \nonumber \\&= - M{a^2}k\left( {\frac{1}{\mathrm{{P}}} - \frac{{{\mathrm{{P}}_3}}}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= - M{a^2}k\left( {\frac{1}{\mathrm{{P}}} - \frac{{{\mathrm{{P}}_3}}}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(B.37)
$$\begin{aligned} {j_6}\left( t \right)&= {L^{ - 1}}\left[ {{J_6}\left( s \right) } \right] \approx {L^{ - 1}}\left[ {{V_6}\left( s \right) } \right] \nonumber \\&= M{\mathrm{{P}}_1}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) \frac{\mathrm{{d}}}{{\mathrm{{d}}t}}\left[ {{E_\alpha }\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) } \right] \nonumber \\&= M{\mathrm{{P}}_1}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) . \end{aligned}$$
(B.38)

Appendix C: Relaxation functions

Using properties of Laplace trasform, from Eqs.(B.2)- (43), the relaxation functions \({{\hat{h}}_n}\left( t \right) \), \({{\hat{i}}_n}\left( t \right) \), \({{\hat{j}}_n}\left( t \right) (n=1,2,3)\) are given by

$$\begin{aligned} {{{\hat{h}}}_1}\left( t \right)&= {L^{ - 1}}\left[ {\frac{{ - \mathrm{{P}}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] = \frac{\mathrm{{P}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.1)
$$\begin{aligned} {{{\hat{h}}}_2}\left( t \right) \mathrm{{ }}&= {L^{ - 1}}\left[ {\frac{{k{\mathrm{{P}}_1}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] = - \frac{{k{\mathrm{{P}}_1}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.2)
$$\begin{aligned} {{{\hat{h}}}_3}\left( t \right)&= {L^{ - 1}}\left[ {\frac{{ - {k^2}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] = \frac{{{k^2}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.3)
$$\begin{aligned} {{{\hat{i}}}_1}\left( t \right) \mathrm{{ }}&= {L^{ - 1}}\left[ {\frac{{2q{a^2}k{\mathrm{{P}}_2}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] \nonumber \\&= - \frac{{2q{a^2}k{\mathrm{{P}}_2}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.4)
$$\begin{aligned} {{{\hat{i}}}_2}\left( t \right)&= {L^{ - 1}}\left[ {\frac{{ - {\mathrm{{P}}_1}\left( {{r_\alpha }{s^\alpha } + 1} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] \nonumber \\&= - {\mathrm{{P}}_1}\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.5)
$$\begin{aligned} {{{\hat{i}}}_3}\left( t \right) \mathrm{{ }}&= {L^{ - 1}}\left[ {\frac{{k\left( {{r_\alpha }{s^\alpha } + 1} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] \nonumber \\&= k\left( {\frac{1}{\mathrm{{P}}} - \frac{1}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.6)
$$\begin{aligned} {{{\hat{j}}}_1}\left( t \right)&= {L^{ - 1}}\left[ {\frac{{2q{a^2}{\mathrm{{P}}_1}{\mathrm{{P}}_2}}}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] \nonumber \\&= - \frac{{2q{a^2}{\mathrm{{P}}_1}{\mathrm{{P}}_2}}}{Q}{t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.7)
$$\begin{aligned} {{{\hat{j}}}_2}\left( t \right)&= {L^{ - 1}}\left[ {\frac{{{a^2}k\left( {{r_\alpha }{s^\alpha } + {\mathrm{{P}}_3}} \right) }}{{\mathrm{{P}}{r_\alpha }{s^\alpha } + Q}}} \right] \nonumber \\&= {a^2}k\left( {\frac{1}{\mathrm{{P}}} - \frac{{{\mathrm{{P}}_3}}}{Q}} \right) {t^{ - 1}}{E_{\alpha ,0}}\left( { - \frac{Q}{{\mathrm{{P}}{r_\alpha }}}{t^\alpha }} \right) , \end{aligned}$$
(C.8)
$$\begin{aligned} {{{\hat{j}}}_3}\left( t \right)&= {{{\hat{i}}}_2}\left( t \right) . \end{aligned}$$
(C.9)

Appendix D: commutative property between average and differentiation

Supposed that x(t) is a random process with probability density function p(xt). Its average or expectation is defined as \(\langle x\rangle =\int _{-\infty }^{+\infty }xp(x,t)\text {d}x\). Distinctly, the integral in the definition of average converges uniformly. Using differential properties and integral properties, one could yield

$$\begin{aligned} \left\langle { }_0^C D_t^\alpha x(t)\right\rangle&=\left\langle \frac{1}{\varGamma (1-\alpha )} \int _0^t \frac{1}{(t-u)^\alpha } \dot{x}(u) d u\right\rangle \nonumber \\&=\int _{-\infty }^{+\infty } \frac{1}{\varGamma (1-\alpha )} \int _0^t \frac{1}{(t-u)^\alpha } \dot{x}(u) d u p(x, u) d x \nonumber \\&=\frac{1}{\varGamma (1-\alpha )} \int _0^t \frac{1}{(t-u)^\alpha } \int _{-\infty }^{+\infty } \dot{x}(u) p(x, u) d x d u \nonumber \\&=\frac{1}{\varGamma (1-\alpha )} \int _0^t \frac{1}{(t-u)^\alpha }\langle \dot{x}(u)\rangle d u \nonumber \\&={ }_0^C D_t^\alpha \left\langle x(t)\right\rangle . \end{aligned}$$
(D.1)

For \(\alpha \rightarrow 1\) one could find that \(\left\langle \frac{d}{dt}x(t)\right\rangle =\frac{d}{dt}\left\langle x(t)\right\rangle \). Analogously, for \(\alpha \rightarrow 2\), \(\left\langle \frac{d^2}{dt^2}x(t)\right\rangle =\frac{d^2}{dt^2}\left\langle x(t)\right\rangle \). For commutativity of integer order, one can also see Refs. [50,51,52,53,54].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., He, G., Peng, Y. et al. Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise. Eur. Phys. J. B 96, 43 (2023). https://doi.org/10.1140/epjb/s10051-023-00511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00511-4

Navigation