Skip to main content
Log in

Correlation between structural, electronic, and optical response of Ga-doped AlSb for optoelectronic applications: a first principle study

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Density functional theory is used to examine structural, electronic, and optical properties of Al1−xGaxSb by employing the full potential linear augmented plane wave method. Structure parameters as lattice constants, bulk modulus, pressure derivatives, ground-state energy, and volume optimization are employed by generalizing gradient approximation (GGA-PBE). A remarkable deviation of lattice constant and Bulk modulus is observed by adding the concentration of Ga atoms in AlSb. Electronic properties like band structure and density of states are calculated by GGA-PBE with the addition of the Tran–Blaha-modified Becke–Johnson (TB–mBJ) approach. The calculated results demonstrate that the binary compound AlSb shows an indirect (Γ–X) bandgap and is optically inactive. By increasing Ga concentration in AlSb at varying percentage, bandgap transforms from indirect to direct (Γ–Γ) and the material becomes optically active. There is a marked change in optical behavior in dielectric constant, optical conductivity, reflectivity, refractive index, and absorption coefficient, and energy loss by adding Ga concentration in AlSb. Obtained results are analyzed with experimental data and employed as a gateway to suggest that material is the best candidate for optoelectronic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We used the well known Simulation package Win2k which is available on the domain and also given the reference. Data can be reproduced using the salient features of this work which are given in the Sect. 2 “Computational details”.]

References

  1. X. Deng, Y. Wu, J. Dai, D. Kang, D. Zhang, Electronic structure tuning and bandgap opening of graphene by hole/electron co-doping. Phys. Lett. Sect A Gen. At. Solid State Phys. 375, 3890–3894 (2011)

    Google Scholar 

  2. T. Ohnuma, M. Nagano, K. Nemoto, Indirect-to-direct transition of (AlAs)n/(AlP)n strained short-period superlattices. Jpn. J. Appl. Phys. 39, L972 (2000)

    Article  ADS  Google Scholar 

  3. M. Guemou, A. Abdiche, R. Riane, R. Khenata, Ab initio study of the structural, electronic and optical properties of BAs and BN compounds and BNxAs1x alloys. Phys. B Condens. Matter. 436, 33–40 (2014)

    Article  ADS  Google Scholar 

  4. M. Maqbool, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, I. Ahmad, Structural, electronic and optical properties of CsPbX3 (X = Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloys Compd. 705, 828–839 (2017)

    Article  Google Scholar 

  5. I. Vurgaftman, J.R. Meyer, Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89, 5815 (2003)

    Article  ADS  Google Scholar 

  6. M. Mbarki, R. Alaya, A. Rebey, Ab initio investigation of structural and electronic properties of zinc-blende AlN1xBix alloys. Solid State Commun. 155, 12–15 (2013)

    Article  ADS  Google Scholar 

  7. G. Rehman, M. Shafiq, R. Ahmad, S. Jalali-asadabadi, M. Maqbool, I. Khan, H. Rahnamaye-aliabad, I. Ahmad, Electronic band structures of the highly desirable III–V semiconductors: TB-mBJ DFT studies, vol 45 (Springer, Berlin, 2016), pp. 3314–3323

    Google Scholar 

  8. R. Ahmed, F. E-Aleem, S.J. Hashemifar, H. Rashid, H. Akbarzadeh, Physical properties of iii-antiminodes—a first-principles study. Commun. Theor. Phys. 52, 527–533 (2009)

    Article  ADS  Google Scholar 

  9. J. Brouckaert, S. Member, G. Roelkens, D. Van Thourhout, R. Baets, Compact InAlAs-InGaAs metal-semiconductor-metal photodetectors integrated on silicon-on-insulator waveguides. IEEE Photonics Technol. Lett. 19, 1484–1486 (2007)

    Article  ADS  Google Scholar 

  10. D.M. Hoat, J.F. Rivas Silva, A. Méndez Blas, First principles study on structural, electronic and optical properties of Ga1−xBxP ternary alloys (x = 0, 0.25, 0.5, 0.75 and 1). Phys. Lett. Sect A Gen. At. Solid State Phys. 382, 1942–1949 (2018)

    Google Scholar 

  11. A.D. Lee, H. Liu, S. Profile, A.J. Seeds, A. Lee, A. Seeds, Semiconductor III–V lasers monolithically grown on Si substrates* COTS project View project InAs/GaAs Quantum Dot Laser on Group IV Platform View Project Semiconductor III–V lasers monolithically grown on Si substrates Semiconductor III–V lasers monolithic. Semicond. Sci. Technol. 28, 15027–15038 (2012)

    Article  Google Scholar 

  12. Growth and characterization of InGaAs/InAlAs/InP high-electron-mobility transistor structures towards high channel conductivity

  13. F. Dimroth, Phys. Status Solidi C Conf. 3, 373–379 (2006)

    Article  ADS  Google Scholar 

  14. M. Benchehima, H. Abid, A. Sadoun, A. Chabane, Optoelectronic properties of aluminum bismuth antimony ternary alloys for optical telecommunication applications: first principles calculation. Comput. Mater. Sci. 155, 224–234 (2018)

    Article  Google Scholar 

  15. M. Zafar, M. Kashif Masood, M. Rizwan, A. Zia, S. Ahmad, A. Akram, C.C. Bao, M. Shakil, Theoretical study of structural, electronic, optical and elastic properties of AlxGa1−xP. Optik (Stuttg) 182, 1176–1185 (2019)

    Article  ADS  Google Scholar 

  16. F. El Haj Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, O. Pagès, First-principles study of the ternary semiconductor alloys (Ga, Al)(As, Sb). J. Alloys Compd. 499, 80–89 (2010)

    Article  Google Scholar 

  17. M.A. Khan, A.G.N. Bouarissa, H. Ziani, Band parameters for Zn1−xMoxTe studied by means of spin-polarized first-principles calculations. J. Comput. Electron. 19, 38–46 (2019)

    Article  Google Scholar 

  18. E. Engel, S.H. Vosko, Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Phys. Rev. B. 47, 13164–13174 (1993)

    Article  ADS  Google Scholar 

  19. G.U.L. Rehman, M. Shafiq, R. Ahmad, M. Maqbool, I. Khan, I. Ahmad, Electronic band structures of the highly desirable III–V semiconductors: TB-mBJ DFT studies. J. Electron. Mater. 45, 3314–3323 (2016)

    Article  ADS  Google Scholar 

  20. K. Schwarz, DFT calculations of solids with LAPW and WIEN2k. J. Solid State Chem. 176, 319–328 (2003)

    Article  ADS  Google Scholar 

  21. C. Ma, M.G. Brik, Hybrid density-functional calculations of structural, elastic and electronic properties for a series of cubic perovskites Cs M F 3 (M = Ca, Cd, Hg, and Pb). Comput. Mater. Sci. 58, 101–112 (2012)

    Article  Google Scholar 

  22. A.P. Gazhulina, M.O. Marychev, Structural, electronic and nonlinear optical properties of B3 and B20 compounds: a first-principles investigation within the LDA, GGA and modified Becke–Johnson exchange potential plus LDA. J. Alloys Compd. 623, 413–437 (2015)

    Article  Google Scholar 

  23. R. Xiao, H. Yan, Y. Pei, B. Li, K. Yang, J. Liu, X. Liu, Preparation of AlSb film by screen printing and sintering method. J. Mater. Sci. Mater. Electron. 30, 13290–13296 (2019)

    Article  Google Scholar 

  24. A. Delin, P. Ravindran, O. Eriksson, J.M. Wills, Full-potential optical calculations of lead chalcogenides. Int. J. Quantum Chem. 69, 349–358 (1998)

    Article  Google Scholar 

  25. N. Benyahia, A. Zaoui, D. Madouri, M. Ferhat, Dynamic properties of III–V polytypes from density-functional theory. J. Appl. Phys. 121, 125701 (2017)

    Article  ADS  Google Scholar 

  26. R. Ahmed, S. Javad Hashemifar, H. Akbarzadeh, M. Ahmed, Fazal-e-Aleem, Ab initio study of structural and electronic properties of III-arsenide binary compounds. Comput. Mater. Sci. 39, 580–586 (2007) (Electronic and thermoelectric properties of AlxGa1-xN Mater.Sci. Semicond. Process. 113, 105049–105055 (2020))

  27. M. Benchehima, H. Abid, A.C. Chaouche, A. Resfa, Structural and optoelectronic properties of BxAl1-xSb ternary alloys: first principles calculations. EPJ Appl. Phys. 77, 30101 (2017)

    Article  ADS  Google Scholar 

  28. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  ADS  Google Scholar 

  29. R. Moussa, A. Abdiche, R. Khenata, F. Soyalp, First principles calculation of the structural, electronic, optical and elastic properties of the cubic AlxGa1-xSb ternary alloy. Opt. Mater. (Amst) 113, 110850 (2021)

    Article  Google Scholar 

  30. W. Liu, W.T. Zheng, Q. Jiang, First-principles study of the surface energy and work function of III-V semiconductor compounds. Phys. Rev. B. Condens. Matter Mater. Phys. 75, 235322 (2007)

    Article  ADS  Google Scholar 

  31. H. Salehi, H.A. Badehian, M. Farbod, First principle study of the physical properties of semiconducting binary antimonide compounds under hydrostatic pressures. Mater. Sci. Semicond. Process. 26, 477–490 (2014)

    Article  Google Scholar 

  32. K. Strössner, S. Ves, C. Koo Kim, M. Cardona, Dependence of the direct and indirect gap of AlSb on hydrostatic pressure. Phys. Rev. B. 33, 4044–4053 (1986)

    Article  ADS  Google Scholar 

  33. P.R. Hernandez, A. Muñoz, A. Mujica, High pressure phases of AlSb from ab-initio theory. Phys. Status Solidi Basic Res. 198, 455–459 (1996)

    Article  ADS  Google Scholar 

  34. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  35. A. Bentayeb, F. Driss Khodja, S. Chibani, N. Marbouh, B. Bekki, B. Khalfallah, M. Elkeurti, Structural, electronic, and optical properties of AlNxSb1−x alloys through TB–mBJ–PBEsol: DFT study. J. Comput. Electron. 18, 791–801 (2019)

    Article  Google Scholar 

  36. M.A. Ali, N. Khan, F. Ahmad, A. Ali, M. Ayaz, First-principles calculations of opto-electronic properties of IIIAs (III = Al, Ga, In) under influence of spin–orbit interaction effects. Bull. Mater. Sci. 42, 1–10 (2019)

    Article  Google Scholar 

  37. K. Nakano, T. Sakai, Assessing the performance of the Tran–Blaha modified Becke–Johnson exchange potential for optical constants of semiconductors in the ultraviolet-visible light region. J. Appl. Phys. 123, 015104 (2018)

    Article  ADS  Google Scholar 

  38. F. Wang, D.P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001)

    Article  ADS  Google Scholar 

  39. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. Appl. Phys. Rev. 89, 5815–5875 (2001)

    Article  ADS  Google Scholar 

  40. G. Sharma, K. Joshi, M. Mishra, R.K. Kothari, Electronic structure of AlAs: a Compton profile study. J. Alloys Compd. 485, 682–686 (2009)

    Article  Google Scholar 

  41. M.A. Ali, H. Aleem, B. Sarwar, G. Murtaza, First-principles calculations for optoelectronic properties of AlSb and GaSb under influence of spin–orbit interaction effect. Indian J. Phys. 94, 477–484 (2020)

    Article  ADS  Google Scholar 

  42. S. Fahad, G. Murtaza, T. Ouahrani, R. Khenata, M. Yousaf, S. Bin Omran, S. Mohammad, Structural, elastic, electronic, bonding, and optical properties of BeAZ (A = Si, Ge, Sn; Z = P, As) chalcopyrites. J. Alloys Compd. 646, 211–222 (2015)

    Article  Google Scholar 

  43. D. Chen, PhD dissertation, Mechanical, electronic and optical properties of multiternary semiconductor alloys, New Jersey Institute of Technology, Digital Commons @ NJIT (2013)

  44. B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, R. Ahmad, Ab initio study of the band gap engineering of Al1–xGaxN for optoelectronic applications. J. Appl. Phys. 109, 023109 (2011)

    Article  ADS  Google Scholar 

  45. S. Saha, T.P. Sinha, A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B Condens. Matter Mater. Phys. 62, 8828–8834 (2000)

    Article  ADS  Google Scholar 

  46. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093–2097 (1962)

    Article  ADS  MATH  Google Scholar 

  47. A.R. Degheidy, S.A.A. Elwakil, E.B. Elkenany, Energy band structure calculations of GaxIn1–x P alloys under the influence of temperature and pressure. J. Alloys Compd. 574, 580–590 (2013)

    Article  Google Scholar 

  48. S. Berrah, A. Boukortt, H. Abid, Optical properties of the cubic alloy (In, Ga)N. Phys. E Low Dimens. Syst. Nanostruct. 41, 701–704 (2009)

    Article  ADS  Google Scholar 

  49. A. Degheidy, S. Elwakil, Energy band structure calculations of GaxIn1−x P alloys under the influence of temperature and pressure (Elsevier, New York, 2013)

    Book  Google Scholar 

  50. D.E. Boublenza, A. Zaoui, M. Djermouni, S. Kacimi, A. Lekhal, F. Drief, S. Ait Abderrahmane, New 122-materials for optoelectronic applications: An ab-initio comparison analysis. Mater. Sci. Semicond. Process. 133, 105949 (2021)

    Article  Google Scholar 

  51. M. Hadjab, S. Berrah, H. Abid, M.I. Ziane, H. Bennacer, A.H. Reshak, First-principles investigation of the optical properties for rocksalt mixed metal oxide MgxZn1−xO. Mater. Chem. Phys. 182, 182–189 (2016)

    Article  Google Scholar 

  52. P. Rani, G.S. Dubey, V.K. Jindal, DFT study of optical properties of pure and doped graphene. Phys. E Low Dimens. Syst. Nanostruct. 62, 28–35 (2014)

    Article  ADS  Google Scholar 

  53. Z. Zhang, C. Chai, Y. Song, L. Kong, Y. Yang, A DFT study on physical properties of III–V compounds (AlN, GaN, AlP, and GaP) in the P3121 phase. Mater. Res. Express. 8, 25908 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the physics department University of Engineering and Technology Lahore, the solid-state physics Department the University of Punjab Lahore, The Department of Physics, Ghazi University DG Khan under HEC NRPU Project No. 15785 for financial and computational support and the Department of the Physics, University of Malakand, for providing us the best opportunities and superior services to complete this research work. We can never forget the contributions of Dr Khurshid Aslam Bhatti (Late) for his true guidance and support to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sardar Sikandar Hayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabi, S., Anwar, A.W., Wazir, Z. et al. Correlation between structural, electronic, and optical response of Ga-doped AlSb for optoelectronic applications: a first principle study. Eur. Phys. J. B 95, 55 (2022). https://doi.org/10.1140/epjb/s10051-022-00287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00287-z

Navigation